Skip to main content
Log in

Charge Properties of the MOS Transistor Structure with the Channel Made from a Two-Dimensional Crystal

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) semiconductor crystals can be applied to further increase the efficiency and speed of field-effect transistors. Such transistors are free from some of the adverse effects present in the traditional MOS transistors when their size is reduced. In this study, the model of the transistor MOS structure with the channel made of a 2D-crystal is proposed and its charge properties are investigated. The numerical simulation of such characteristics is carried out within the range of variations of the electrophysical properties of 2D-crystals representative of MoSe2, WS2, WSe2, ZrSe2, HfSe2, and PtTe2. The self-consistent correlation between electrophysical parameters of the structure via the chemical potential is found, and the effect of the potential of the field electrode and the gate insulator’s capacitance on them is demonstrated. The calculations of the steepness of the transfer characteristic and the voltage gain of such a transistor structure demonstrate that, for the channel made from transition metal dichalcogenides (TMD) with the forbidden gap band falling in the range 0.25–2.1 eV, the magnitudes of these parameters can attain 0.1 mA/V and 1000, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Yoon, Y., Ganapathi, K., and Salahuddin, S., How good can monolayer MoS2 transistors be?, Nano Lett., 2011, vol. 11, pp. 3768–3773.

    Article  Google Scholar 

  2. Wang, Q.H., Kalantar-Zadeh, K., Kis, A., et al., Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol., 2012, vol. 7, pp. 699–712.

    Article  Google Scholar 

  3. Mingsheng, X., Tao, L., Minmin, S., and Hongzheng, C., Graphene-like two-dimensional materials, Chem. Rev., 2013, vol. 113, no. 5, pp. 3766–3798.

    Article  Google Scholar 

  4. Radisavljevic, B., Radenovic, A., Brivio, J., et al., Single-layer MoS2 transistors, Nat. Nanotechnol., 2011, vol. 6, pp. 147–150.

    Article  Google Scholar 

  5. Cao, W., Kang, J., Liu, W., and Banerjee, K., A compact current-voltage model for 2D semiconductor based field-effect transistors considering interface traps, mobility degradation, and inefficient doping effect, IEEE Trans. Electron. Dev., 2014, vol. 61, no. 12, pp. 4282–4290.

    Article  Google Scholar 

  6. Jiménez, D., Drift-diffusion model for single layer transition metal dichalcogenide field-effect transistors, Appl. Phys. Lett., 2012, vol. 101, pp. 243501-1–243501-4.

    Article  Google Scholar 

  7. Fuhrer, M.S. and Hone, J., Measurement of mobility in dual-gated MoS2 transistors, Nat. Nanotechnol., 2013, vol. 8, pp. 146–147.

    Article  Google Scholar 

  8. Duan, X., Wang, C., Pan, A., and Duan, X., Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges, Chem. Soc. Rev., 2015, vol. 44, no. 24, pp. 8859–8876.

    Article  Google Scholar 

  9. Chhowalla, M., Suk Shin, H., Eda, G., et al., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nat. Chem., 2013, vol. 5, no. 4, pp. 263–275.

    Article  Google Scholar 

  10. Wang, X., Fan, W., Fan, Z., et al., Substrate modified thermal stability of mono- and few-layer MoS2, Nanoscale, 2018, vol. 10, no. 7, pp. 3540–3546.

    Article  Google Scholar 

  11. Chernozatonskii, L.A. and Artyukh, A.A., Quasi-two-dimensional transition metal dichalcogenides: structure, synthesis, properties, and applications, Phys. Usp., 2018, vol. 61, no. 1, pp. 2–28.

    Article  Google Scholar 

  12. Krivosheeva, A.V., Shaposhnikov, V.L., Borisenko, V.E., et al., Band gap modifications of two-dimensional defected MoS2, Int. J. Nanotechnol., 2015, vol. 12, nos. 8–9, pp. 654–662.

    Article  Google Scholar 

  13. Gusakova, J., Wang, X., Shiau, L.L., et al., Electronic properties of bulk and monolayer TMDs: theoretical study within DFT framework (GVJ-2e method), Phys. Status Solidi A, 2017, vol. 214, no. 12, p. 1700218-1–7.

  14. Krivosheeva, A.V., Shaposhnikov, V.L., Borisenko, V.E., et al., Theoretical study of defect impact on two-dimensional MoS2, J. Semicond., 2015, vol. 36, no. 12, pp. 122002-1–6.

  15. Ilatikhameneh, H., Tan, Y., Novakovic, B., et al., Tunnel field-effect transistors in 2D transition metal dichalcogenide materials, IEEE J. Explor. Solid-State Comput. Dev. Circuits, 2015, vol. 1, pp. 12–18.

    Google Scholar 

  16. Rasmussen, F.A. and Thygesen, K.S., Computational 2D materials database: electronic structure of transition-metal dichalcogenides and oxides, J. Phys. Chem. C, 2015, vol. 119, pp. 13169–13183.

    Article  Google Scholar 

  17. Liu, L., Bala Kumar, S., Ouyang, Y., and Guo, J., Performance limits of monolayer transition metal dichalcogenide transistors, IEEE Trans. Electron Dev., 2011, vol. 58, no. 9, pp. 3042–3047.

    Article  Google Scholar 

  18. Krivosheeva, A.V., Shaposhnikov, V.L., and Bori-senko, V.E., Zone structure and optical properties of molybdenum and tungsten dichalcogenides, Vestn. Fonda Fundam. Issled., 2016, vol. 77, no. 3 (16), pp. 41–48.

  19. Sze, S.M., Physics of Semiconductor Devices, New York: Wiley, 1969.

    Google Scholar 

  20. Zebrev, G.I., Graphene field effect transistors: diffusion-drift theory, in Physics and Applications of Graphene-Theory, Mikhailov, S., London: InTech, 2011, Chap. 23, pp. 476–498.

  21. Luryi, S., Quantum capacitance devices, Appl. Phys. Lett., 1988, vol. 52, pp. 501–503.

    Article  Google Scholar 

  22. Wolfram, S., The Mathematica Book, 5th ed., USA: Wolfram Media, 2003.

    MATH  Google Scholar 

  23. Finge, T., Riederer, F., Mueller, M.R., et al., Investigations on field-effect transistors based on two-dimensional materials, Ann. Phys. (Berlin), 2017, vol. 529, no. 11, pp. 1700087-1–10.

  24. Roy, T., Tosun, M., Kang, J.S., et al., Field-effect transistors built from all two-dimensional material components, ACS Nano, 2014, vol. 8, no. 6, pp. 6259–6264.

    Article  Google Scholar 

  25. Tong, X., Ashalley, E., Lin, F., et al., Advances in MoS2-based field effect transistors (FETs), Nano-Micro Lett., 2015, vol. 7, no. 3, pp. 203–218.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Danilyuk.

Additional information

Translated by G. Levina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makovskaya, T.I., Danilyuk, A.L., Krivosheeva, A.V. et al. Charge Properties of the MOS Transistor Structure with the Channel Made from a Two-Dimensional Crystal. Russ Microelectron 49, 507–515 (2020). https://doi.org/10.1134/S1063739720070069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739720070069

Keywords:

Navigation