Skip to main content
Log in

Influence of Deposition Conditions and Ion-Plasma Treatment of Thin Cobalt Films on Their Electrical Resistivity

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

The electrical resistivity ρ of cobalt films with a thickness of 10 to 55 nm deposited in different modes of magnetron sputtering on SiO2/Si wafers with their subsequent ion-plasma treatment is investigated. Co films 42 nm thick with minimum ρ of 9.8 µΩ cm, comparable to ρ of a bulk metal, are obtained at a temperature of 600 K. Treating the Co film surface in dense argon plasma with an energy of ions of about 20 eV at room temperature leads to an increase in resistivity, while, at Т ~ 500 K, both a decrease and an increase in ρ are observed. Such a change in resistivity is due to the combined action of ion bombardment and temperature. The mechanism of action of the ion-plasma treatment on the electrical conductivity of the Co film is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Vyas, A.A., Zhou, C., and Yang, C.Y., On-chip interconnect conductor materials for end-of-roadmap technology nodes, IEEE Trans. Nanotechnol., 2018, vol. 17, no. 1, pp. 4–10.

    Article  Google Scholar 

  2. Gall, D., Metals for low-resistivity interconnects, in Proceedings of the IEEE International Interconnect Technology Conference (IITC), Santa Clara, 2018, pp. 157–159.

  3. Gall, D., Electron mean free path in elemental metals, J. Appl. Phys., 2016, vol. 119, no. 8, p. 085101.

    Article  Google Scholar 

  4. Van der Veen, M.H., Vandersmissen, K., Dictus, D., Demuynck, S., Liu, R., Bin, X., Nalla, P., Lesniewska, A., Hall, L., and Croes, K., Cobalt bottom-up contact and via prefill enabling advanced logic and DRAM technologies, in Proceedings of the IEEE International Interconnect Technology Conference and IEEE Materials for Advanced Metallization Conference (IITC/MAM), 2015, pp. 25–28.

  5. Bekiaris, N., Wu, Z., Ren, H., Naik, M., Park, J.H., Lee, M., Ha, T.H., Hou, W., Bakke, J.R., Gage, M., Wang, Y., and Tang, J., Cobalt fill for advanced interconnects, in Proceedings of the IEEE International Interconnect Technology Conference (IITC), 2017, pp. 1–3.

  6. Dutta, S., Beyne, S., Gupta, A., Kundu, S., Van Elshocht, S., Jamieson, G., Bömmels, J., Wilson, C.J., Tokei, Z., and Adelmann, C., Sub-100 nm2 cobalt interconnects, IEEE Electron Dev. Lett., 2018, vol. 39, no. 5, pp. 731–734.

    Article  Google Scholar 

  7. Milosevic, E., Kerdsongpanya, S., McGahay, M.E., Zangiabadi, A., Barmak, K., and Gall, D., Resistivity scaling and electron surface scattering in epitaxial Co(0001) layers, J. Appl. Phys., 2019, vol. 125, no. 24, p. 245105.

    Article  Google Scholar 

  8. Wislicenus, M., Liske, R., Gerlich, L., Vasilev, B., and Preusse, A., Cobalt advanced barrier metallization: a resistivity composition analysis, Microelectron. Eng., 2015, vol. 137, pp. 11–15.

    Article  Google Scholar 

  9. Pacco, A., Akanishi, Y., Le, Q.T., Kesters, E., Murdoch, G., and Holsteyns, F., Controlled cobalt recess for advanced interconnect metallization, Microelectron. Eng., 2019, vol. 217, p. 111131.

    Article  Google Scholar 

  10. Jablonka, L., Riekehr, L., Zhang, Z., Zhang, S.-L., and Kubart, T., Highly conductive ultrathin Co films by high-power impulse magnetron sputtering, Appl. Phys. Lett., 2018, vol. 112, no. 4, p. 043103.

    Article  Google Scholar 

  11. Hu, Y. and Huang, Q., Effects of dimethylglyoxime and cyclohexane dioxime on the electrochemical nucleation and growth of cobalt, J. Electrochem. Soc., 2019, vol. 166, no. 1, pp. D3175–D3181.

    Article  Google Scholar 

  12. Kelly, J., Kamineni, V., Lin, X., Pacquette, A., Hopstaken, M., Liang, Y., Amanapu, H., Peethala, B., Jiang, L., Demarest, J., Shobha, H., Raymond, M., and Haran, B., Annealing and impurity effects in Co thin films for MOL contact and BEOL metallization, J. Electrochem. Soc., 2019, vol. 166, no. 1, pp. D3100–D3109.

    Article  Google Scholar 

  13. Wu, J., Wafula, F., Branagan, S., Suzuki, H., and van Eisden, J., Mechanism of cobalt bottom-up filling for advanced node interconnect metallization, J. Electrochem. Soc., 2019, vol. 166, no. 1, pp. D3136–D3141.

    Article  Google Scholar 

  14. Ezzat, S.S., Mani, P.D., Khaniya, A., Kaden, W., Gall, D., Barmak, K., and Coffey, K.R., Resistivity and surface scattering of (0001) single crystal ruthenium thin films, J. Vac. Sci. Technol., 2019, vol. A, no. 3, p. 031516.

  15. Namba, Y., Resistivity and temperature coefficient of thin metal films with rough surface, Jpn. J. Appl. Phys., 1970, vol. 9, no. 11, pp. 1326–1329.

    Article  Google Scholar 

  16. Chopra, K.L., Thin Film Phenomena, New York: McGraw Hill, 1969.

    Google Scholar 

  17. Josell, D., Brongersma, S.H., and Tokei, Z., Size-dependent resistivity in nanoscale interconnects, Ann. Rev. Mater. Res., 2009, vol. 39, pp. 231–254.

    Article  Google Scholar 

  18. Amirov, I.I., Naumov, V.V., Izyumov, M.O., and Selyukov, R.S., The effect of ion energy on the surface morphology of platinum film under high-frequency ion plasma sputtering, Tech. Phys. Lett., 2013, vol. 39, no. 2, pp. 130–133.

    Article  Google Scholar 

  19. Chowdhury, A. and Bhattacharjee, S., Experimental investigation of change in sheet resistance and Debye temperatures in metallic thin films due to low-energy ion beam irradiation, J. Phys. D: Appl. Phys., 2013, vol. 46, no. 43, p. 435304.

    Article  Google Scholar 

  20. Amirov, I.I., Izyumov, M.O., and Naumov, V.V., Low energy selective etching of metal films in oxygen-containing high-density argon plasma, J. Surf. Invest.: X‑ray, Synchrotron Neutron Tech., 2016, vol. 10, no. 4, pp. 855–859.

    Article  Google Scholar 

  21. Dzhumaliev, A.S., Nikulin, Yu.V., and Filimonov, Yu.A., Influence of annealing and argon pressure on the microcrystalline structure of magnetron-sputtered textured cobalt films, Tech. Phys., 2018, vol. 63, no. 11, pp. 1678–1686.

    Article  Google Scholar 

  22. Sondheimer, E.H., The mean free path of electrons in metals, Adv. Phys., 1952, vol. 1, no. 1, pp. 1–42.

    Article  Google Scholar 

  23. Mayadas, A.F. and Shatzkes, M., Electrical-resistivity model for polycrystalline films: the case of arbitrary reflection at external surfaces, Phys. Rev. B, 1970, vol. 1, no. 4, pp. 1382–1389.

    Article  Google Scholar 

  24. Chason, E., Sheldon, B.W., Freund, L.B., Floro, J.A., and Hearne, S.J., Origin of compressive residual stress in polycrystalline thin films, Phys. Rev. Lett., 2002, vol. 88, no. 15, p. 156103.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was performed using the equipment of the Facilities Sharing Centre “Diagnostics of Micro- and Nanostructures.”

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 18-29-27017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Amirov.

Additional information

Translated by Z. Smirnova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amirov, I.I., Selyukov, R.V., Naumov, V.V. et al. Influence of Deposition Conditions and Ion-Plasma Treatment of Thin Cobalt Films on Their Electrical Resistivity. Russ Microelectron 50, 1–7 (2021). https://doi.org/10.1134/S1063739721010030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739721010030

Navigation