Skip to main content
Log in

Anomalies of Acoustic Wave Scattering Near the Cut-off Points of Continuous Spectrum (A Review)

  • CLASSICAL PROBLEMS OF LINEAR ACOUSTICS AND WAVE THEORY
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

Several anomalies of wave scattering that occur in acoustic waveguides with cylindrical or corrugated rigid walls at frequencies close to the cut-off points (thresholds) of continuous spectrum are considered. The notion of threshold resonances generated by “almost standing waves”, which cause no energy transfer to infinity, is introduced. For corrugated waveguides, examples are presented to illustrate the opening of spectral gaps (wave stopping zones) and eigenvalues near their edges and common or degenerate thresholds. Weinstein’s and Wood’s anomalies are described, which occur above and below the thresholds and manifest themselves in “almost complete” reflection and transmission of waves, and in disproportionally fast variation of the diffraction pattern, respectively. Examples of complete wave transmission (“invisibility of obstacle”) are discussed along with the procedures of sharpening and smoothing of Wood’s anomalies, specifically, formation of eigenvalues embedded into the continuous spectrum and corresponding trapped waves. The Sommerfeld, Umov–Mandelshtam, and limiting absorption principles are compared along with the specific features of their application at thresholds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

Notes

  1. The term is conventionally used for waveguides with soft walls generating Dirichlet boundary conditions.

  2. In this paper, elastic waveguides are understood as waveguides described by a two- or three-dimensional system of equations of elasticity theory.

  3. It differs from the continuous spectrum by the set of EVs of infinite multiplicity, which are absent in cylindrical waveguides.

  4. Point \(\eta = - \pi \) corresponds to the same Floquet wave as point \(\eta = \pi \) does, and, therefore, the first of them is omitted.

  5. Sequence (3) of EF for the problem of an isolated container.

  6. Criterion of wave trapping was proposed in [74] for quantum waveguides. It may be adjusted to acoustic waveguides, but requires a large set of new notation.

  7. One more case \({{J}_{m}}(H) = 0\) allows many possibilities, including the retention of TR; they are considered in detail in [83] and omitted below.

  8. Its construction will be described in the journal named Sbornik Mathematics.

REFERENCES

  1. S. A. Nazarov, Theor. Math. Phys. 167 (2), 606 (2011).

  2. A. I. Korolkov, S. A. Nazarov, and A. V. Shanin, Z. Angew. Math. Mech. 96, 1245 (2016).

    Article  Google Scholar 

  3. S. Molchanov and B. Vainberg, Comm. Math. Phys. 273, 533 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  4. D. Grieser, Proc. London Math. Soc. 97, 718 (2008).

    Article  MathSciNet  Google Scholar 

  5. S. A. Nazarov, Math. Izv. 81 (1), 31 (2017).

  6. S. A. Nazarov, Math. Izv. 82, (6), 1148 (2018).

  7. A. Aslanyan, L. Parnovski, and D. Vassiliev, Q. J. Mech. Appl. Math. 53, 429 (2000).

    Article  Google Scholar 

  8. C. M. Linton and P. McIver, Wave Motion 45 (1-2), 16 (2007).

    Article  MathSciNet  Google Scholar 

  9. S. A. Nazarov, Funct. Anal. Appl. 475 (3), 195(2013).

  10. C. H. Wilcox, Scattering Theory for Diffraction Gratings (Springer, Singapore, 1997).

    MATH  Google Scholar 

  11. P. Mitra and S. W. Lee, Analytical Techniques in the Theory of Guided Waves (Macmillan, New York, 1971; Mir, Moscow, 1974).

  12. M. Reed and B. Simon, Methods of Mathematical Physics, Vol. 3: Scattering Theory (Acad. Press, 1980; Mir, Moscow, 1982) [in Russian].

  13. P. A. Kuchment, Usp. Mat. Nauk 37 (4), 3 (1982).

    Google Scholar 

  14. M. M. Skriganov, in Scientific Works of Steklov Mathematical Institute of the USSR Academy of Science (Nauka, Leningrad, 1985), Vol. 171 [in Russian].

    Google Scholar 

  15. P. Kuchment, Floquet Theory for Partial Differential Equations (Birchäuser, Basel, 1993).

    Book  MATH  Google Scholar 

  16. S. A. Nazarov and B. A. Plamenevsky, Elliptic Problems in Domains with Piecewise Smooth Boundaries (Walter de Gruyter, Berlin, New York, 1994).

    Book  MATH  Google Scholar 

  17. I. M. Gel’fand, Dokl. Akad. Nauk SSSR 73, 1117 (1950).

    Google Scholar 

  18. S. A. Nazarov, Math. Notes 87 (5), 738 (2010).

  19. F. L. Bakharev, S. A. Nazarov, and K. M. Ruotsalainen, Appl. Anal. 88, 1 (2012).

    Google Scholar 

  20. D. Borisov and K. Pankrashkin, J. Phys. A: Math. Theor. 46 (23), 235203 (2013).

    Article  ADS  Google Scholar 

  21. S. A. Nazarov, Vestn. St. Petersburg Univ.: Math. 46 (2), 89 (2013).

  22. R. Hempel and K. Lienau, Commun. Partial Differ. Equations 25, 1445 (2000).

    Article  Google Scholar 

  23. R. Hempel and O. Post, in Proc. 3rd Int. ISAAC Congress Progress in Analysis (Berlin, 2001), pp. 577–587.

  24. O. Post, J. Differ. Equations 187, 23 (2003).

    Article  ADS  Google Scholar 

  25. P. Exner and O. Post, J. Geom. Phys. 54 (1), 77 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  26. O. Post, Spectral Analysis on Graph-Like Spaces (Springer, Heidelberg, 2012).

    Book  MATH  Google Scholar 

  27. V. V. Zhikov, Algebra Anal. 16 (5), 34 (2004).

    Google Scholar 

  28. S. A. Nazarov, Funct. Anal. Appl. 43 (3), 239 (2009).

  29. S. A. Nazarov, K. Ruotsalainen, J. Taskinen, Journal of Math. Sci. 181 (2), 164 (2012).

  30. F. L. Bakharev and S. A. Nazarov, Sib. Math. J. 56 (4), 575 (2015).

  31. F. L. Bakharev, G. Cardone, S. A. Nazarov, and J. Taskinen, Integr. Equations Oper. Theory 88 (3), 373 (2017).

    Article  Google Scholar 

  32. J. Sanchez Hubert and E. Sanchez-Palencia, Vibration and Coupling of Continuous Systems (Springer-Verlag, Berlin, 1989).

    Book  MATH  Google Scholar 

  33. M. Lobo and E. Perez, Math. Models Methods Appl. Sci. 7, 291 (1997).

    Article  MathSciNet  Google Scholar 

  34. S. A. Nazarov, Differ. Equations 46 (5), 730 (2010).

  35. J. T. Beale, Commun. Pure Appl. Math. 26, 549 (1973).

    Article  Google Scholar 

  36. A. A. Arsen’ev, Zh. Vychisl. Mat. Mat. Fiz. 16, 718 (1976).

    Google Scholar 

  37. R. R. Gadyl’shin, Mat. Zametki 54 (6), 10 (1993), R. R. Gadyl’shin, Mat. Zametki 55 (1), 20 (1994), R. R. Gadyl’shin, Mat. Zametki 61 (4), 494 (1997).

    Article  Google Scholar 

  38. S. A. Nazarov, J. Math. Sci. 80 (5), 1989 (1996); S. A. Nazarov, J. Math. Sci. 97 (3), 155 (1999).

  39. V. A. Kozlov, V. G. Maz’ya, and A. B. Movchan, Asymptotic Analysis of Fields in Multi-Structures (Clarendon Press, Oxford, 1999).

    MATH  Google Scholar 

  40. R. R. Gadyl’shin, Izv. Ross. Akad. Nauk, Ser. Mat. 69 (2), 45 (2005).

    Google Scholar 

  41. P. Joly and S. Tordeux, SIAM J. Multiscale Model. Simul. 5 (1), 304 (2006).

    Article  MathSciNet  Google Scholar 

  42. P. Joly and S. Tordeux, Math. Model. Numer. Anal. 42 (2), 193 (2008).

    Article  Google Scholar 

  43. S. A. Nazarov, K. Ruotsalainen, and J. Taskinen, Appl. Anal. 89, 109 (2010).

    Article  MathSciNet  Google Scholar 

  44. S. A. Nazarov, Comput. Math. Math. Phys. 56 (5), 864 (2016).

    Article  MathSciNet  Google Scholar 

  45. S. A. Nazarov and J. Taskinen, J. Math. Sci. 194 (1), 72 (2013).

  46. A. V. Sobolev and J. Walthoe, Proc. London Math. Soc. 85 (1), 717 (2002).

    Article  MathSciNet  Google Scholar 

  47. T. A. Suslina and R. G. Shternberg, Algebra Anal. 13 (2), 159 (2002).

    Google Scholar 

  48. E. Shargorodskii and A. V. Sobolev, J. d’Anal. Math. 91 (1), 63 (2003).

    Google Scholar 

  49. K. Miller, Arch. Rat. Mech. Anal. 54 (2), 105 (1974).

    Article  Google Scholar 

  50. N. D. Filonov, Probl. Mat. Anal. 22, 246 (2001).

    Google Scholar 

  51. M. N. Demchenko, Zap. Nauch. Semin. Peterburg. Otd. Mat. Inst. Ross. Akad. Nauk 393, 803 (2011).

    Google Scholar 

  52. M. S. Agranovich and M. I. Vishik, Usp. Mat. Nauk 19 (3), 53 (1964).

    Google Scholar 

  53. K. Pankrashkin, J. Math. Anal. Appl. 449 (1), 907 (2017).

    Article  MathSciNet  Google Scholar 

  54. F. L. Bakharev and S. A. Nazarov, Criteria for the Absence and Existence of Bounded Solutions at the Threshold Frequency in a Junction of Quantum Waveguides. https://arxiv.org/abs/1705.10481.

  55. S. A. Nazarov, Acoust. Phys. 56 (6), 1004 (2010).

    Article  ADS  Google Scholar 

  56. S. A. Nazarov, K. Ruotsalainen, and P. Uusitalo, Z. Angew. Math. Mech. 94 (6), 477 (2014).

    Article  Google Scholar 

  57. S. A. Nazarov, Comput. Math. Math. Phys. 54 (8), 1261 (2014).

    Article  MathSciNet  Google Scholar 

  58. F. L. Bakharev, S. G. Matveenko, and S. A. Nazarov, St. Petersburg Math. J. 29 (3), 423 (2018).

  59. D. V. Evans, M. Levitin, and D. Vasil’ev, J. Fluid Mech. 261, 21 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  60. D. S. Jones, Proc. Cambridge Philos. Soc. 49, 668 (1953).

    Article  ADS  MathSciNet  Google Scholar 

  61. S. A. Nazarov, St. Petersburg Math. J. 28 (3), 377 (2016).

  62. S. G. Mikhlin, Variational Methods in Mathematical Physics (Nauka, Moscow, 1970) [in Russian].

    MATH  Google Scholar 

  63. S. A. Nazarov, J. Math. Sci. 195 (5), 676 (2013).

  64. S. A. Nazarov, Dokl. Math. 100 (2), 491 (2019).

    Article  Google Scholar 

  65. N. A. Umov, Equations for Energy Motion in Solids (Tipogr. Ul’rikha i Shul’tse, Odessa, 1874) [in Russian].

    Google Scholar 

  66. L. I. Mandel’shtam, Lectures on Optics, Relativity Theory and Quantum Mechanics. Collection of Scientific Works (USSR Acad. Sci., Moscow, 1947), Vol. 2 [in Russian].

    Google Scholar 

  67. B. R. Vainberg, Usp. Mat. Nauk 21 (6), 115 (1966).

    Google Scholar 

  68. I. I. Vorovich and V. A. Babeshko, Mixed Dynamical Problems of Elasticity Theory for Nonclassical Areas (Nauka, Moscow, 1979) [in Russian].

    MATH  Google Scholar 

  69. S. A. Nazarov, Acoust. Phys. 59 (3), 272 (2013).

    Article  ADS  Google Scholar 

  70. J. H. Poynting, Philos. Trans. R. Soc. London 175, 343 (1884).

    Article  ADS  Google Scholar 

  71. S. A. Nazarov, Sb. Math. 205 (7), 953 (2014).

  72. I. V. Kamotskii and S. A. Nazarov, J. Math. Sci. 111 (4), 3657 (2002).

  73. I. V. Kamotskii and S. A. Nazarov, Sb. Math. 190 (1), 111 (1999); I. V. Kamotskii and S. A. Nazarov, Sb. Math. 190 (2), 205 (1999).

  74. S. A. Nazarov, Funct. Anal. Appl. 40 (2), 97 (2006)

  75. L. Chesnel, and S. A. Nazarov, Commun. Math. Sci. 16 (7), 1779 (2018).

  76. U. Fano, Phys. Rev. 124 (6), 1866 (1961).

    Article  ADS  Google Scholar 

  77. S. P. Shipman and S. Venakides, Phys. Rev. E 71 (2), 026611 (2005).

    Article  ADS  Google Scholar 

  78. S. P. Shipman and H. Tu, SIAM J. Appl. Math. 72 (1), 216 (2012).

    Article  MathSciNet  Google Scholar 

  79. S. P. Shipman and A. T. Welters, J. Math. Phys. 54 (10), 103511 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  80. R. Wood, Proc. Phys. Soc. London 18, 269 (1902).

    Article  Google Scholar 

  81. W. Seabrook, Doctor Wood, Modern Wizard of the Laboratory (Harcourt Brace, New York, 1941).

    Google Scholar 

  82. A. Hessel and A. A. Oliner, Appl. Opt. 4 (10), 1275 (1965).

    Article  ADS  Google Scholar 

  83. S. A. Nazarov, Acoust. Phys. 64 (5), 535 (2018).

    Article  ADS  Google Scholar 

  84. A. N. Kolmogorov and S. V. Fomin, Elements of Function Theory and Functional Analysis (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  85. S. A. Nazarov and K. M. Ruotsalainen, Z. Anal. Anwend. 35, 211 (2016).

    Article  MathSciNet  Google Scholar 

  86. S. A. Nazarov, J. Math. Sci. 172 (4), 555 (2011).

  87. S. A. Nazarov, Acoust. Phys. 58 (6), 633 (2012).

    Article  ADS  Google Scholar 

  88. A.-S. Bonnet-Ben Dhia and S. A. Nazarov, Acoust. Phys. 59, 633 (2013).

    Article  ADS  Google Scholar 

  89. L. Chesnel and S. A. Nazarov, Inverse Probl. Imaging 10 (6), 977 (2016).

    Article  MathSciNet  Google Scholar 

  90. A.-S. Bonnet-Ben Dhia, E. Lunéville, Y. Mbeutcha, and S. A. Nazarov, Math. Methods Appl. Sci. 40 (2), 335 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  91. P. Duclos and P. Exner, Rev. Math. Phys. 7 (1), 73 (1995).

    Article  MathSciNet  Google Scholar 

  92. S. A. Nazarov, Sib. Math. J. 51 (5), 866 (2010).

  93. P. Exner and H. Kovarîk, Quantum Waveguides. Theoretical and Mathematical Physics (Springer, Cham, 2015).

    Book  MATH  Google Scholar 

  94. S. A. Nazarov, Algebra Anal. 31 (5), 154 (2019).

    Google Scholar 

  95. S. A. Nazarov, Acoust. Phys. 57 (6), 764 (2011).

    Article  ADS  Google Scholar 

  96. S. A. Nazarov, Sb. Math. 206 (6), 782–813 (2015).

  97. T. Kato, Perturbation Theory for Linear Operators (Springer, Berlin, 1966; Mir, Moscow, 1972).

  98. M. M. Vainberg and V. A. Trenogin, The Theory of Solutions Ramification for Nonlinear Equations (Nauka, Moscow, 1969) [in Russian].

    MATH  Google Scholar 

  99. S. A. Nazarov, Funkts. Anal. Prilozh. 54 (1), 41 (2020).

    Article  Google Scholar 

  100. L. A. Vainshtein, Diffraction Theory and Factorization Method (Sovetskoe Radio, Moscow, 1966) [in Russian].

    Google Scholar 

  101. A. V. Shanin, SIAM J. Appl. Math. 70, 1201 (2009).

    Article  MathSciNet  Google Scholar 

  102. A. I. Korol’kov and A. V. Shanin, Zap. Nauch. Semin. S.-Peterb. Otd. Mat. Inst. Ross. Akad. Nauk 422, 62 (2014).

    Google Scholar 

  103. A. V. Shanin and A. I. Korolkov, in Proc. Progress in Electromagnetics Research Symp. (PIERS) (St. Petersburg, 2017), p. 3521.

  104. A. V. Shanin and A. I. Korolkov, Wave Motion 68, 218 (2017).

    Article  MathSciNet  Google Scholar 

  105. S. A. Nazarov, Sib. Math. J. 59 (1), 85 (2018).

  106. S. A. Nazarov, J. Math. Sci. 244 (3), 451–497 (2020).

Download references

Funding

This work was supported by the Russian Scientific Foundation (project no. 17-11-01003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Nazarov.

Additional information

Translated by E. Golyamina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazarov, S.A. Anomalies of Acoustic Wave Scattering Near the Cut-off Points of Continuous Spectrum (A Review). Acoust. Phys. 66, 477–494 (2020). https://doi.org/10.1134/S1063771020050115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771020050115

Keywords:

Navigation