Skip to main content
Log in

Improving the Orbits of Four Visual Binaries Using Gaia DR2 Data and Observations with the 26-inch Refractor of Pulkovo Observatory

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

We use a modified method of the apparent motion parameters (AMP), in which the initial data from the Gaia DR2 catalog are not only high-precision coordinates, parallaxes, and radial velocities of the components of the studied wide binary stars, but are also their proper motions. The coincidence of the AMP orbits obtained both from the Gaia DR2 data and from the Pulkovo series from 1960–2019 leads to an orbit that is unambiguous in terms of an ascending node. The results for improving the orbits of such visual binaries of the Pulkovo research program as ADS 246, 2757, 10386, and 12169 are presented. Orbits (with periods of 1226, 1075, 4500, and 4900 years), orbital orientation parameters in the Galaxy coordinate frame, and the masses of these systems are obtained (0.59 ± 0.05, 1.7 ± 0.3, 1.7 ± 0.4, and \(2.25 \pm 0.5{{M}_{ \odot }}\)). It is shown that dense homogeneous series of ground-based observations, such as CCD observations with the 26-inch refractor of the Pulkovo Observatory, do not lose their relevance, serve as the basis for identifying the best solution based on both Gaia data and our own observations, and should be continued. It was also shown that the Thiele–Innes method is not suitable for determining the orbits of binary stars with a separation of more than 100 AU. The paper is based on a presentation made at the conference “Astrometry yesterday, today, and tomorrow,” which took place on October 14–16, 2019 at the Sternberg Astronomical Institute of Moscow State University.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Notes

  1. http://izmccd.puldb.ru/vds.htm

REFERENCES

  1. N. A. Shakht, L. G. Romanenko, D. L. Gorshanov, and O. O. Vasilkova, Solar Syst. Res. 50, 56 (2016).

    Article  ADS  Google Scholar 

  2. W. I. Hartkopf and B. D. Mason, Sixth Catalog of Orbits of Visual Binary Stars (US Naval Observatory, Washington, 2016). http://ad.usno.navy.mil/wds/orb6.html.

  3. A. A. Kisselev and L. G. Romanenko, ASP Conf. Ser. 316, 250 (2004).

  4. J.-L. Agati, D. Bonneau, A. Jorissen, E. Soulie, S. Udry, P. Verhas, and J. Dommanget, Astron. Astrophys. 574, A6 (2015).

    Article  Google Scholar 

  5. W. I. Hartkopf, H. A. McAlister, and O. G. Franz, Astron. J. 98, 1014 (1989).

    Article  ADS  Google Scholar 

  6. A. Hale, Astron. J. 107, 306 (1994).

    Article  ADS  Google Scholar 

  7. B. D. Mason, W. I. Hartkopf, G. I. Wycoff, and E. R. Holdenried, Astron. J. 132, 2219 (2006).

    Article  ADS  Google Scholar 

  8. A. E. Baidin, N. I. Perov, and L. G. Romanenko, Vestn. SPbGU, Mat. Mekh. Astron., No. 5 (63), 154 (2018).

  9. I. S. Izmailov, Astron. Lett. 45, 30 (2019).

    Article  ADS  Google Scholar 

  10. S. Blunt, E. L. Nielsen, R. J. de Rosa, Q. M. Konopasky, et al., Astron. J. 153, 229 (2017).

    Article  ADS  Google Scholar 

  11. B. D. Mason, G. L. Wycoff, and W. I. Hartkopf, The Washington Visual Double Star Catalogue (US Naval Observatory, Washington, 2018). http://ad.usno.navy.mil/wds/wds.html.

  12. A. G. A. Brown, A. Vallenari, T. Prusti, J. H. J. de Bruijne, et al., Astron. Astrophys. 616, A1 (2018).

    Article  Google Scholar 

  13. A. E. Baidin, Cand. Sci. (Phys. Math.) Dissertation (Pulkovo Main Astron. Observ. RAS, St. Petersburg, Yaroslavl’, 2018).

  14. A. A. Kiselev and O. V. Kiyaeva, Sov. Astron. 24, 708 (1980).

    Google Scholar 

  15. A. A. Kiselev and L. G. Romanenko, Astron. Rep. 40, 795 (1996).

    ADS  Google Scholar 

  16. A. A. Kiselev, L. G. Romanenko, and O. A. Kalinichenko, Astron. Rep. 53, 126 (1996).

    Article  ADS  Google Scholar 

  17. O. V. Kiyaeva, L. G. Romanenko, and R. Ya. Zhuchkov, Astron. Lett. 43, 316 (2017).

    Article  ADS  Google Scholar 

  18. O. V. Kiyaeva and L. G. Romanenko, Astron. Lett. 46, 555 (2020).

    Article  ADS  Google Scholar 

  19. L. G. Romanenko and O. A. Kalinichenko, Astron. Astrophys. Trans. 31, 7 (2019).

    ADS  Google Scholar 

  20. O. V. Kiyaeva, Sov. Astron. 27, 701 (1983).

    ADS  Google Scholar 

  21. A. A. Kiselev, O. V. Kiyaeva, I. S. Izmailov, L. G. Romanenko, O. A. Kalinichenko, O. O. Vasil’kova, T. A. Vasil’eva, N. A. Shakht, D. L. Gorshanov, and E. A. Roschina, Astron. Rep. 58, 78 (2014).

    Article  ADS  Google Scholar 

  22. I. S. Izmailov, M. L. Khovricheva, M. Yu. Khovrichev, O. V. Kiyaeva, E. V. Khrutskaya, L. G. Romanenko, E. A. Grosheva, K. L. Maslennikov, and O. A. Kalinichenko, Astron. Lett. 36, 349 (2010).

    Article  ADS  Google Scholar 

  23. I. S. Izmailov and E. A. Roshchina, Astrophys. Bull. 71, 225 (2016).

    Article  ADS  Google Scholar 

  24. L. G. Romanenko, Astron. Rep. 61, 206 (2017).

    Article  ADS  Google Scholar 

  25. G. W. Marcy and K. J. Benitz, Astrophys. J. 344, 441 (1989).

    Article  ADS  Google Scholar 

  26. A. A. Tokovinin, A. Duquennoy, J.-L. Halbwachs, and M. Mayor, Astron. Astrophys. 282, 831 (1994).

    ADS  Google Scholar 

  27. A. A. Tokovinin, Astron. Rep. 38, 258 (1994).

    ADS  Google Scholar 

  28. J.-L. Halbwachs, M. Mayor, and S. Udry, Astron. Astrophys. 619, A81 (2018).

    Article  Google Scholar 

  29. L. G. Romanenko and A. A. Kiselev, Astron. Rep. 58, 30 (2014).

    Article  ADS  Google Scholar 

  30. A. A. Kiselev, L. G. Romanenko, I. S. Izmailov, and E. A. Grosheva, Izv. GAO at Pulkovo, 214, 239 (2000).

    Google Scholar 

  31. S. L. Lippincott, Astron. J. 77, 165 (1972).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was carried out using the WDS [11] and Gaia DR2 [12] catalogs. The authors express their deep gratitude to its creators, as well as personally B.D. Mason for providing WDS data upon our request. The authors are sincerely grateful to all the observers of the 26-inch refractor of the CAO RAS, especially to the co-authors of catalogs [2123]. The authors are also grateful to O.V. Kiyaeva for valuable comments and advices. We propose to continue observations and studies of visual binaries of the Pulkovo program, including wide pairs with slow orbital motion, as well as work on the Pulkovo Catalog of Orbits of Wide Pairs.

Funding

This work was supported by a grant from the Russian Foundation for Basic Research (project 20-02-00563A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. G. Romanenko.

Additional information

Translated by E. Seifina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romanenko, L.G., Izmailov, I.S. Improving the Orbits of Four Visual Binaries Using Gaia DR2 Data and Observations with the 26-inch Refractor of Pulkovo Observatory. Astron. Rep. 65, 209–223 (2021). https://doi.org/10.1134/S1063772921030021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772921030021

Navigation