Skip to main content
Log in

On the stability of circumbinary planetary systems

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

The dynamics of circumbinary planetary systems (the systems in which the planets orbit a central binary) with a small binary mass ratio discovered to date is considered. The domains of chaotic motion have been revealed in the “pericentric distance–eccentricity” plane of initial conditions for the planetary orbits through numerical experiments. Based on an analytical criterion for the chaoticity of planetary orbits in binary star systems, we have constructed theoretical curves that describe the global boundary of the chaotic zone around the central binary for each of the systems. In addition, based on Mardling’s theory describing the separate resonance “teeth” (corresponding to integer resonances between the orbital periods of a planet and the binary), we have constructed the local boundaries of chaos. Both theoretical models are shown to describe adequately the boundaries of chaos on the numerically constructed stability diagrams, suggesting that these theories are efficient in providing analytical criteria for the chaoticity of planetary orbits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Benest, Astron. Astrophys. 206, 143 (1988).

    ADS  Google Scholar 

  2. D. Benest, Astron. Astrophys. 223, 361 (1989).

    ADS  Google Scholar 

  3. D. Benest and R. Gonczi, Earth, Moon, Planets 81, 7 (1998).

    Article  ADS  Google Scholar 

  4. D. Benest and R. Gonczi, Earth, Moon Planets 93, 175 (2004).

    Article  ADS  Google Scholar 

  5. S. Chavez, N. Georgakarakos, S. Prodan, M. Reyes-Ruiz, H. Aceves, F. Betancourt, and E. Perez-Tijerina, Mon. Not. R. Astron. Soc. 446, 1283 (2015).

    Article  ADS  Google Scholar 

  6. B. V. Chirikov, Phys. Rep. 52, 263 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  7. L. Doyle, J. Carter, D. Fabrycky, R. W. Slawson, S. B. Howell, J. N. Winn, J. A. Orosz, A. Prsa, et al., Science 333, 1602 (2011).

    Article  ADS  Google Scholar 

  8. M. J. Holman and P. A. Wiegert, Astron. J. 117, 621 (1999).

    Article  ADS  Google Scholar 

  9. Su-Shu Huang, Publ. Astron. Soc. Pacif. 72, 106 (1960).

    Article  ADS  Google Scholar 

  10. V. Kostov, P. R. McCullough, T. C. Hinse, Z. I. Tsvetanov, G. Hébrard, R. F. Díaz, M. Deleuil, and J. A. Valenti, Astrophys. J. 770, 52 (2013).

    Article  ADS  Google Scholar 

  11. V. Kostov, P. R. McCullough, J. A. Carter, M. Deleuil, R. F. Díaz, D. C. Fabrycky, G. Hébrard, T. C. Hinse, et al., Astron. J. 784, 14 (2014).

    Article  ADS  Google Scholar 

  12. A. Lichtenberg and M. Lieberman, Regular and Chaotic Dynamics (Springer, New York, 1992).

    Book  MATH  Google Scholar 

  13. J. Lissauer, E. Quintana, J. Chambers, M. J. Duncan, and F. C. Adams, Rev.Mex. Astron.Astrophys. 22, 99 (2004).

    ADS  Google Scholar 

  14. R. Mardling, Lect. Notes Phys. 760, 59 (2008a).

    Article  ADS  MathSciNet  Google Scholar 

  15. R. Mardling, in Proceedings of the IAU Symposium No. 246 on Dynamical Evolution of Dense Stellar Systems, Capri, Italy, Sept. 5–9, 2007, Ed. by E. Vesperini, M. Giersz, and A. Sills (Cambridge Univ. Press, Cambridge, 2008b), p. 199.

  16. A. V. Mel’nikov and I. I. Shevchenko, Solar Syst. Res. 32, 480 (1998).

    ADS  Google Scholar 

  17. J. Orosz, W. F. Welsh, J. A. Carter, E. Brugamyer, L.A. Buchhave, W. D. Cochran, M. Endl, E. B. Ford, et al., Astrophys. J. 758, 87 (2012).

    Article  ADS  Google Scholar 

  18. E. A. Popova, in Proceedings of the IAU Symposium No. 310 on Complex Planetary Systems, Ed. by Z. Knezevic and A. Lemaitre (Cambridge Univ. Press, Cambridge, 2014), p. 98.

  19. E. A. Popova and I. I. Shevchenko, Astron. Lett. 38, 581 (2012a).

    Article  ADS  Google Scholar 

  20. E. A. Popova and I. I. Shevchenko, in Proceedings of the IAU Symposium No. 282 From Interacting Binaries to Exoplanets: Essential Modeling Tools, Ed. by M. T. Richards and I. Hubeny (Cambridge Univ. Press, Cambridge, 2012b), p. 450.

  21. E. A. Popova and I. I. Shevchenko, Astrophys. J. 769, 152 (2013).

    Article  ADS  Google Scholar 

  22. I. I. Shevchenko, in Asteroids, Comets, Meteors, Ed. by B. Warmbein (ESA, Berlin, 2002), p. 367.

  23. I. I. Shevchenko, Astrophys. J. 799, 8 (2015).

    Article  ADS  Google Scholar 

  24. I. I. Shevchenko and A. V. Mel’nikov, JETP Lett. 77, 642 (2003).

    Article  ADS  Google Scholar 

  25. P. Thébault, F. Marzari, and H. Scholl, Mon. Not. R. Astron. Soc. 388, 1528 (2008).

    Article  ADS  Google Scholar 

  26. P. Thébault, F. Marzari, and H. Scholl, Mon. Not. R. Astron. Soc. 393, 21 (2009).

    Article  ADS  Google Scholar 

  27. W. Welsh et al., in Proceedings of the IAU Symposium No. 293 on Formation, Detection, and Characterization of Extrasolar Habitable Planets, August 27–31, 2012, Ed. by N. Haghighipour (2013), p. 1.

  28. P. Wiegert and M. Holman, Astron. J. 113, 1445 (1997).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Shevchenko.

Additional information

Original Russian Text © E.A. Popova, I.I. Shevchenko, 2016, published in Pis’ma v Astronomicheskii Zhurnal, 2016, Vol. 42, No. 7, pp. 525–532.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popova, E.A., Shevchenko, I.I. On the stability of circumbinary planetary systems. Astron. Lett. 42, 474–481 (2016). https://doi.org/10.1134/S1063773716060050

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773716060050

Keywords

Navigation