Skip to main content
Log in

A Water-Vapor Maser Flare in a High-Velocity Line toward W49N

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

Powerful flares in Galactic kilomasers are closely associated with regions of intense star formation. They contribute to the elucidation of physical processes occurring in these structures. We have recorded a superpowerful flare in the high-velocity −81 km s−1 line in the Galactic maser source W49N. As a result of our monitoring at the RT-22 (Simeiz), RT-32 (Torun), RT-100 (Effelsberg), and RT-32 (Medicina) radio telescopes in the period from September 2017 to November 2018, we have obtained the shape of the spectral flux density variations in the source with time. At the peak the flux density reached P≈5 ×104 Jy. The flare has a double pattern and different durations of its components. The pattern of spectral flux density variations for the first flare with a considerably shorter duration is apparently related to a sharp increase in the density of the medium and the photon flux and to a significant rise in the temperature to hundreds of kelvins. We propose a mechanism of primary energy release related to the existence of close massive multiple systems in star-forming regions. A powerful gravitational perturbation at the system’s periastron can lead to a partial ejection of the envelope of the central massive star in a direction close to the major axis of the ellipse of the companion’s orbit. This explains the significant asymmetry of high-velocity lines in W49N. The ejected envelope is an energy source more significant than the stellar wind and can explain the giant flares in the object. Further comprehensive studies in this direction, including monitoring VLBI studies, are needed to confirm this assumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Baudry, J. R. Foster, and W. J. Welch, Astron. Astrophys. 36, 217 (1974).

    ADS  Google Scholar 

  2. R. W. Boyd, Pabl. Astr. Soc. Pacif. 89, 141 (1977).

    Article  ADS  Google Scholar 

  3. G. Garay, J. M. Moran, and Haschick, Astron. J. 338, 244 (1989).

    Article  ADS  Google Scholar 

  4. R. Genzel, D. Dowens, J. M. Moran, K. J. Johnston, J. H. Spencer, L. I. Matveenko, L. R. Kogan, V. I. Kostenko, et al., Astron. Astrophys. 78, 239 (1979).

    ADS  Google Scholar 

  5. P. Goldreich and D. A. Keeley, Astron. J. 174, 517 (1972).

    Article  ADS  Google Scholar 

  6. P. Goldreich, D. A. Keeley, and J. J. Kwan, Astrophys. J. 179, 111 (1973).

    Article  ADS  Google Scholar 

  7. W. M. Goss, S. H. Knowles, M. Balister, R. A. Batchelor, and K. J. Wellington, Mon. Not. R. Astron. Soc. 174, 541 (1976).

    Article  ADS  Google Scholar 

  8. S. F. Gull, Mon. Not. R. Astron. Soc. 161, 47 (1973).

    Article  ADS  Google Scholar 

  9. T. M. Heckman and W. T. Sullivan, Astrophys. J. 17, 105 (1976).

    Google Scholar 

  10. G. H. Herbig, Astrophys. J. 189, 75 (1974).

    Article  ADS  Google Scholar 

  11. K. Inayoshi, K. Sugiyama, and T. Hosokawa, Astrophys. J. 773, 70 (2013).

    Article  Google Scholar 

  12. K. J. Knowles, J. M. Johnston, B. F. Morgan, et al., Astron. J. 79, 925 (1974).

    Article  ADS  Google Scholar 

  13. A. Kraus, T. P. Krichbaum, R. Wegner, et al., Astron. Astrophys. 401, 161 (2003).

    Article  ADS  Google Scholar 

  14. L. V. Kuhi, Astrophys. J. 140, 1409 (1964).

    Article  ADS  Google Scholar 

  15. R. B. Larson, Ann. Rev. Astron. Astrophys. 11, 219 (1973).

    Article  ADS  Google Scholar 

  16. L. T. Little, G. J. White, and P. W. Riley, Mon. Not. R. Astron. Soc. 180, 639 (1977).

    Article  ADS  Google Scholar 

  17. L. I. Matveenko, D. A. Graham, and P. J. Diamond, Sov. Astron. Lett. 14, 468 (1988).

    ADS  Google Scholar 

  18. A. Melis, C. Migoni, G. Comoretto, et al., SRT Int. Rep. 52 (2015).

  19. J. M. Morgan, M. J. Reid, C. J. Lada, et al., Astron. J. 224, L67 (1978).

    Article  ADS  Google Scholar 

  20. N. S. Nesterov, Vol’A. E. vach, I. D. Strepka, et al., Radiofiz. Radioastron. 5, 320 (2000).

    Google Scholar 

  21. T. Omodaka, T. Maeda, M. Miyoshi, et al., Publ. Astron. Soc. Jpn. 51, 333 (1999).

    Article  ADS  Google Scholar 

  22. S. Yu. Parfenov and A. M. Sobolev, Mon. Not. R. Astron. Soc. 444, 620, 30 (2014).

    Article  ADS  Google Scholar 

  23. R. A. Perley and B. J. Butler, Astrophys. J. Suppl. Ser. 204, 19 (2013).

    Article  ADS  Google Scholar 

  24. V. Radhakrishnan, W. M. Goss, and R. Bhandari, Pramana 5, 51 (1975).

    Article  ADS  Google Scholar 

  25. F. Sato, F. Akabane, and F. J. Kerr, Austral. J. Phys. 20, 197 (1967).

    Article  ADS  Google Scholar 

  26. T. Shimoikura, H. Kobayashi, T. Omodaka, et al., Astrophys. J. 634, 459 (2005).

    Article  ADS  Google Scholar 

  27. J. Silk and J.R. Burke, Astrophys. J. 190, 11 (1974).

    Article  ADS  Google Scholar 

  28. V. I. Slysh, Astrophys. J. 14, 213 (1973).

    Google Scholar 

  29. J. H. Spencer and B. F. Burke, Astrophys. J. 185, L83 (1973).

    Article  ADS  Google Scholar 

  30. S. E. Strom, G. L. Grasdalen, and K. M. Strom, Astrophys. J. 191, 111 (1974).

    Article  ADS  Google Scholar 

  31. W. T. Sullivan, Astrophys. J. Suppl. Ser. 25, 393 (1973).

    Article  ADS  Google Scholar 

  32. V. S. Strel’nitskii and R. A. Sunynyaev, Sov. Astron. 16, 579 (1972).

    Google Scholar 

  33. D.A. Varshalovich, A. V. Ivanchik, and N. S. Babkovskaya, Astron. Lett. 32, 29 (2006).

    Article  ADS  Google Scholar 

  34. A. E. Volvach, L. N. Volvach, I. D. Strepka, et al., Izv. Krymsk. Astrofiz. Observ. 104, 72 (2009).

    Google Scholar 

  35. L. N. Volvach, A. E. Volvach, M. G. Larionov, G. C. MacLeod, S. P. van den Heever, P. Wolak, and M. Olech, Mon. Not. R. Astron. Soc. 482, L90 (2019a).

    Article  ADS  Google Scholar 

  36. L. N. Volvach, A. E. Volvach, M. G. Larionov, et al., Astron. Rep. 63, 49 (2019b).

    Article  ADS  Google Scholar 

  37. C. G. Wynn-Williams, Mon. Not. R. Astron. Soc. 151, 397 (1971).

    Article  ADS  Google Scholar 

  38. B. Zhang, M. J. Read, R. M. Menten, et al., Astrophys. J. 79, 13 (2013).

    Google Scholar 

Download references

Acknowledgments

We thank the National Science Center of Poland, grant no. 2016/21/B/ST9/01455.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. Volvach.

Additional information

Russian Text © The Author(s), 2019, published in Pis’ma v Astronomicheskii Zhurnal, 2019, Vol. 45, No. 5, pp. 367–376.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volvach, L.N., Volvach, A.E., Larionov, M.G. et al. A Water-Vapor Maser Flare in a High-Velocity Line toward W49N. Astron. Lett. 45, 321–330 (2019). https://doi.org/10.1134/S1063773719050074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773719050074

Keywords

Navigation