Skip to main content
Log in

Influence of Collisions with Hydrogen on Titanium Abundance Determinations in Cool Stars

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

The possibility of solving the problem of a discrepancy in the non-LTE abundances from Ti I and Ti II lines in metal-poor stars is investigated by applying accurate data to take into account the collisions with hydrogen atoms. For this purpose, we have calculated for the first time the rate coefficients for bound–bound transitions in inelastic collisions of titanium atoms and ions with hydrogen atoms and for the following charge-exchange processes: Ti I \(+\) H \(\leftrightarrow\) Ti II \(+\) H\({}^{-}\) and Ti II \(+\) H \(\leftrightarrow\) Ti III \(+\) H\({}^{-}\). The influence of these data on non-LTE abundance determinations has been tested for the Sun and four metal-poor stars. For Ti I and Ti II the application of the derived rate coefficients has led to an increase in the departures from LTE and an increase in the titanium abundance compared to what is obtained using approximate formulas to calculate the rate coefficients. In metal-poor stars we have failed to reconcile the non-LTE abundances from lines of two ionization stages. The problem known in the literature cannot be solved only based on an improvement of the rates of collisions with hydrogen atoms in non-LTE calculations with classical model atmospheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. We use the standard notation for the elemental abundance ratios \(\textrm{[X/H]}=\log(N_{\textrm{X}}/N_{\textrm{tot}})_{\textrm{star}}-\log(N_{\textrm{X}}/N_{\textrm{tot}})_{\textrm{sun}}\).

  2. http://archive.eso.org/eso/eso_archive_main.html.

  3. http://www.astro.uu.se/\(\sim\)oleg/download.html.

REFERENCES

  1. A. M. Amarsi, P. E. Nissen, and Á. Skúladóttir, Astron. Astrophys. 630, A104 (2019).

    Article  ADS  Google Scholar 

  2. C. A. L. Bailerjones, J. Rybizki, M. Fouesneau, G. Mantelet, and R. Andrae, Astron. J. 156, 58 (2018).

    Article  ADS  Google Scholar 

  3. P. S. Barklem, A. K. Belyaev, M. Guitou, N. Feautrier, F. X. Gadéa, and A. Spielfiedel, Astron. Astrophys. 530, A94 (2011).

    Article  ADS  Google Scholar 

  4. A. K. Belyaev and S. A. Yakovleva, Astron. Astrophys. 606, A147 (2017a).

    Article  ADS  Google Scholar 

  5. A. K. Belyaev and S. A. Yakovleva, Astron. Astrophys. 608, A33 (2017b).

    Article  ADS  Google Scholar 

  6. M. Bergemann, Astrophys. J. 413, 2184 (2011).

    ADS  Google Scholar 

  7. M. Bergemann, R.-P. Kudritzki, B. Plez, B. Davies, K. Lind, and Z. Gazak, Mon. Not. R. Astron. Soc. 751, 156 (2012).

    Google Scholar 

  8. A. G. A. Brown, A. Vallenari, T. Prusti, J. H. J. de Bruijne, C. Babusiaux, C. A. L. Bailer-Jones, M. Biermann, D. W. Evans, L. Eyer, et al. (Gaia Collab.), Astron. Astrophys. 616, A1 (2018).

    Article  Google Scholar 

  9. K. Butler, private commun. (2015).

  10. K. Butler and J. Giddings, Newslett. Anal. Astron. Spectra, No. 9, 723 (1985).

    Google Scholar 

  11. L. Casagrande, I. Ramírez, J. Meléndez, M. Bessel, and M. Asplund, Astron. Astrophys., 512, A54 (2010).

  12. R. Collet, M. Asplund, R. Trampedach, Astron. Astrophys. 469, 687 (2007).

    Article  ADS  Google Scholar 

  13. O. L. Creevey, F. Thevenin, T. S. Boyajian, P. Kervella, A. Chiavassa, L. Bigot, A. Merand, U. Heiter, et al., Astron. Astrophys. 575, A17 (2012).

    Article  Google Scholar 

  14. O. L. Creevey, F. Thevenin, P. Berio, U. Heiter, K. von Braun, D. Mourard, L. Bigot, T. S. Boyajian, et al., Astron. Astrophys. 575, A26 (2015).

    Article  Google Scholar 

  15. V. Dobrovolskas, A. Kučinskas, M. Steffen, H.-G. Ludwig, D. Prakapavičius, J. Klevas, E. Caffau, P. Bonifacio, Astron. Astrophys. 559, A102 (2013).

    Article  Google Scholar 

  16. H. W. Drawin, Z. Phys. 211, 404 (1968).

    Article  ADS  Google Scholar 

  17. H. W. Drawin, Z. Phys. 225, 483 (1969).

    Article  ADS  Google Scholar 

  18. B. Gustafsson, B. Edvardsson, K. Eriksson, U. G. Jørgensen, Å. Nordlund, and B. Plez, Astron. Astrophys. 486, 951 (2008).

    Article  ADS  Google Scholar 

  19. I. Karovicova, T. R. White, T. Nordlander, K. Lind, L. Casagrande, M. J. Ireland, D. Huber, O. Creevey, D. Mourard, G. H. Schaefer, G. Gilmore, A. Chiavassa, M. Wittkowski, P. Jofré, U. Heiter, F. Thévenin, and M. Asplund, Mon. Not. R. Astron. Soc. 475, L81 (2018).

    Article  ADS  Google Scholar 

  20. F. Kupka, N. E. Piskunov, T. A. Ryabchikova, H. C. Stempels, and W. W. Weiss, Astron. Astrophys. Suppl. 138, 119 (1999).

    ADS  Google Scholar 

  21. R. Kurucz, I. Furenlid, J. Brault, and L. Testerman, National Solar Observatory Atlas, Sunspot (Natl. Solar Observatory, New Mexico, 1984).

    Google Scholar 

  22. J. E. Lawler, A. Guzman, M. P. Wood, C. Sneden, and J. J. Cowan, Astrophys. J. Suppl. 205, 11 (2013).

    Article  ADS  Google Scholar 

  23. L. Mashonkina, T. Gehren, J. R. Shi, A. J. Korn, and F. Grupp, Astron. Astrophys. 528, A87 (2011).

    Article  ADS  Google Scholar 

  24. L. Mashonkina, P. Jablonka, T. Sitnova, Y. Pakhomov, and P. North, Astron. Astrophys. 608, A89 (2017).

    Article  ADS  Google Scholar 

  25. L. Mashonkina, T. Sitnova, S. A. Yakovleva, and A. K. Belyaev, Astron. Astrophys. 631, A43 (2019).

    Article  ADS  Google Scholar 

  26. J. C. Pickering, A. P. Thorne, R. Perez, Astrophys. J. Suppl. Ser. 132, 403 (2001).

    Article  ADS  Google Scholar 

  27. T. Ryabchikova, N. Piskunov, R. L. Kurucz, H. C. Stempels, U. Heiter, Y. Pakhomov, and P. S. Barklem, Phys. Scr. 90, 054005 (2015).

    Article  ADS  Google Scholar 

  28. T. M. Sitnova, Astron. Lett. 42, 734 (2016).

    Article  ADS  Google Scholar 

  29. T. M. Sitnova, L. I. Mashonkina, and T. A. Ryabchikova, Mon. Not. R. Astron. Soc. 461, 1000 (2016).

    Article  ADS  Google Scholar 

  30. T. M. Sitnova, L. I. Mashonkina, R. Ezzeddine, and A. Frebel, Mon. Not. R. Astron. Soc. 485, 3527 (2019).

    Article  ADS  Google Scholar 

  31. W. Steenbock and H. Holweger, Astron. Astrophys. 130, 319 (1984).

    ADS  Google Scholar 

  32. Y. Takeda, Publ. Astron. Soc. Jpn. 46, 53 (1994).

    ADS  Google Scholar 

  33. V. Tsymbal, T. Ryabchikova, and T. Sitnova, ASP Conf. Ser. 518, 247 (2019).

  34. M. P. Wood, J. E. Lawler, C. Sneden, J. J. Cowan, Astrophys. J. Suppl. Ser. 208, 27 (2013).

    Article  ADS  Google Scholar 

  35. G. Zhao, L. Mashonkina, S. Alexeeva, Yu. Pakhomov, J.-R. Shi, T. Sitnova, K. Tan, H.-W. Zhang, et al., Astrophys. J. 833, I2, 225 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. Sitnova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sitnova, T.M., Yakovleva, S.A., Belyaev, A.K. et al. Influence of Collisions with Hydrogen on Titanium Abundance Determinations in Cool Stars. Astron. Lett. 46, 120–130 (2020). https://doi.org/10.1134/S1063773720010041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773720010041

Navigation