Skip to main content
Log in

Delay of Spatial Quantum Correlations in Magnetic Nanostructures

  • ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Simultaneous quantum correlations between two spins in magnetic nanostructures are considered in the model of a linear chain of a finite number of atoms with exchange interaction between electron spins of neighboring atoms in the framework of the Heisenberg ferromagnetism theory. We assume that in the initial state, the spins of all chain atoms except the first two are oriented along the same direction. The spins of the first two atoms are flipped. Due to the exchange interaction, this initial state generates a spin flip wave along the chain. The expressions obtained for nonstationary quantum amplitudes of the flip probability waves for an even number of spins can be used for calculating quantum correlations between two spins separated by a large distance in a chain. Numerical calculations of the spin correlator reveal that the correlation between two spins in the chain occurs with a delay on the order of the time of propagation of the exchange interaction along the spin chain. After the delay, the spin correlation amplitude abruptly increases followed by subsequent oscillatory temporal behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. S. A. Nikitov, D. V. Kalyabin, I. V. Lisenkov, A. Slavin, Yu. N. Barabanenkov, S. A. Osokin, A. V. Sadovnikov, E. N. Beginin, M. A. Morozova, Yu. P. Sharaevsky, Yu. A. Filimonov, Yu. V. Khivintsev, S. L. Vysotsky, V. K. Sakharov, and E. S. Pavlov, Phys. Usp. 58, 1002 (2015).

    Article  ADS  Google Scholar 

  2. D. Grundler, Nat. Nanotechnol. 11, 407 (2016).

    Article  ADS  Google Scholar 

  3. A. V. Chumak, V. I. Vasyuchka, A. A. Serga, et al., Nat. Phys. 11, 453 (2015).

    Article  Google Scholar 

  4. Yu. V. Gulyaev, E. A. Vilkov, P. E. Zil’berman, G. M. Mikhailov, A. V. Chernykh, and S. G. Chigarev, J. Commun. Technol. Electron. 60, 1016 (2015).

    Article  Google Scholar 

  5. T. Jungwirth, X. Marti, P. Wadley, and J. Wunderlich, Nat. Nanotech. 11, 231 (2016).

    Article  ADS  Google Scholar 

  6. A. M. Shutyi and D. I. Sementsov, J. Exp. Theor. Phys. 129, 248 (2019).

    Article  ADS  Google Scholar 

  7. L. Landau, Phys. Z. Sovietunion 8, 153 (1935).

    Google Scholar 

  8. A. Aharoni, Introduction to the Theory of Ferromagnetism (Oxford Univ. Press, Oxford, 2000).

    Google Scholar 

  9. Yu. N. Barabanenkov, S. A. Nikitov, and M. Yu. Barabanenkov, Phys. Usp. 62, 82 (2019).

    Article  ADS  Google Scholar 

  10. I. V. Bargatin, B. A. Grishanin, and V. N. Zadkov, Phys. Usp. 44, 597 (2001).

    Article  ADS  Google Scholar 

  11. W. Heisenberg, Z. Phys. 49, 619 (1928).

    Article  ADS  Google Scholar 

  12. H. Bethe, in Quantenmechanik der Ein- und Zwei-Electronenprobleme, Vol. 24 of Handbuch der Physik (Springer, Berlin, 1933), Part 1.

  13. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1953).

    MATH  Google Scholar 

  14. H. A. Bethe, Z. Phys. 71, 205 (1931).

    Article  ADS  Google Scholar 

  15. M. Gaudin, La Fonction d’onde de Bethe (Masson, Paris, 1983).

    MATH  Google Scholar 

Download references

Funding

The work of S.A.N. was supported in part by the Russian Science Foundation (project no. 19-19-00607), the Russian Foundation for Basic Research (project nos. 18-57-76001 and 18-07-00509) (D.V.K.), within State contract no. 075-00475-19-00 (M.Yu.B.), and the grant from the Government of the Russian Federation (agreement no. 074-02-2018-286) for the Terahertz Spintronics Laboratory at the Moscow Institute of Physics and Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Yu. Barabanenkov or S. A. Nikitov.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barabanenkov, M.Y., Kalyabin, D.V. & Nikitov, S.A. Delay of Spatial Quantum Correlations in Magnetic Nanostructures. J. Exp. Theor. Phys. 130, 549–554 (2020). https://doi.org/10.1134/S1063776120020028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120020028

Navigation