Skip to main content
Log in

Waves over Curved Bottom: The Method of Composite Conformal Mapping

  • STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A compact and efficient numerical method is described for studying plane flows of an ideal fluid with a smooth free boundary over a curved and nonuniformly moving bottom. Exact equations of motion in terms of the so-called conformal variables are used. In addition to the previously known applications for shear flows with constant (including zero) vorticity, here a generalization is made to the case of potential flows in uniformly rotating coordinate systems, where centrifugal and Coriolis forces are added to the gravity force. A brief review is given of previous results obtained by this method in a number of physically interesting problems such as modeling of tsunami waves caused by the movement of nonuniform bottom, the dynamics of Bragg (gap) solitons over a spatially periodic bottom profile, the Fermi–Pasta–Ulam (FPU) recurrence phenomenon for waves in a finite pool, the formation of anomalous waves in an opposing nonuniform curent, and the propagation of a solitary wave in a shear current and its runup on a depth difference. In addition, a number of new numerical results are presented concerning the nonlinear dynamics of a free boundary in closed rotating containers partially filled with a fluid—centrifuges of complex shape. In this case, the equations of motion differ in some essential details from those of x-periodic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. L. V. Ovsyannikov, in Dynamics of Continuous Media (Nauka Novosibirsk, 1973), No. 15, p. 104 [in Russian].

  2. L. V. Ovsjannikov, Arch. Mech. 26, 407 (1974).

    Google Scholar 

  3. A. I. Dyachenko, E. A. Kuznetsov, M. D. Spector, and V. E. Zakharov, Phys. Lett. A 221, 73 (1996).

    ADS  Google Scholar 

  4. A. I. Dyachenko, Y. V. Lvov, and V. E. Zakharov, Phys. D (Amsterdam, Neth.) 87, 233 (1995).

  5. A. I. D’yachenko, V. E. Zakharov, and E. A. Kuznetsov, Plasma Phys. Rep. 22, 829 (1996).

    ADS  Google Scholar 

  6. A. I. D’yachenko, Dokl. Math. 63, 115 (2001).

    Google Scholar 

  7. V. E. Zakharov, A. I. Dyachenko, and O. A. Vasilyev, Eur. J. Mech. B: Fluids 21, 283 (2002).

    MathSciNet  Google Scholar 

  8. A. I. Dyachenko and V. E. Zakharov, JETP Lett. 81, 255 (2005).

    ADS  Google Scholar 

  9. V. E. Zakharov, A. I. Dyachenko, and A. O. Prokofiev, Eur. J. Mech. B: Fluids 25, 677 (2006).

    ADS  MathSciNet  Google Scholar 

  10. A. I. Dyachenko and V. E. Zakharov, JETP Lett. 88, 307 (2008).

    ADS  Google Scholar 

  11. W. Choi and R. Camassa, J. Eng. Mech. 125, 756 (1999).

    Google Scholar 

  12. Y. A. Li, J. M. Hyman, and W. Choi, Stud. Appl. Math. 113, 303 (2004).

    MathSciNet  Google Scholar 

  13. R. V. Shamin, Dokl. Math. 73, 112 (2006).

    Google Scholar 

  14. R. V. Shamin, Dokl. Phys. 77, 118 (2008).

    MathSciNet  Google Scholar 

  15. R. V. Shamin, Dokl. Phys. 81, 436 (2010).

    MathSciNet  Google Scholar 

  16. V. E. Zakharov and R. V. Shamin, JETP Lett. 91, 62 (2010).

    ADS  Google Scholar 

  17. V. E. Zakharov and R. V. Shamin, JETP Lett. 96, 66 (2012).

    ADS  Google Scholar 

  18. D. Chalikov and D. Sheinin, J. Comput. Phys. 210, 247 (2005).

    ADS  MathSciNet  Google Scholar 

  19. D. Chalikov, Phys. Fluids 21, 076602 (2009).

    ADS  Google Scholar 

  20. A. V. Slyunyaev, J. Exp. Theor. Phys. 109, 676 (2009).

    ADS  MathSciNet  Google Scholar 

  21. W. Choi, Math. Comput. Simul. 80, 29 (2009).

    Google Scholar 

  22. S. A. Dyachenko, P. M. Lushnikov, and A. O. Korotkevich, JETP Lett. 98, 675 (2013).

    ADS  Google Scholar 

  23. N. M. Zubarev and E. A. Kochurin, JETP Lett. 99, 627 (2014).

    ADS  Google Scholar 

  24. P. M. Lushnikov, J. Fluid Mech. 800, 557 (2016).

    ADS  MathSciNet  Google Scholar 

  25. M. R. Turner and T. J. Bridges, Adv. Comput. Math. 43, 947 (2016).

    Google Scholar 

  26. M. R. Turner, J. Fluids Struct. 64, 1 (2016).

  27. M. G. Blyth and E. I. Parau, J. Fluid Mech. 806, 5 (2016).

    ADS  MathSciNet  Google Scholar 

  28. P. M. Lushnikov, S. A. Dyachenko, and D. A. Silantyev, Proc. R. Soc. A 473, 2017019 (2017).

    Google Scholar 

  29. A. I. Dyachenko, P. M. Lushnikov, and V. E. Zakharov, J. Fluid Mech. 869, 526 (2019).

    ADS  MathSciNet  Google Scholar 

  30. A. I. Dyachenko, S. A. Dyachenko, P. M. Lushnikov, and V. E. Zakharov, J. Fluid Mech. 874, 891 (2019).

    ADS  MathSciNet  Google Scholar 

  31. S. A. Dyachenko, J. Fluid Mech. 860, 408 (2019).

    ADS  MathSciNet  Google Scholar 

  32. T. Gao, A. Doak, J.-M. van den Broeck, and Zh. Wang, Eur. J. Mech. B: Fluids 77, 98 (2019).

    ADS  MathSciNet  Google Scholar 

  33. M. V. Flamarion, P. A. Milewski, and A. Nachbin, Stud. Appl. Math. 142, 433 (2019).

    MathSciNet  Google Scholar 

  34. D. Kachulin, A. Dyachenko, and A. Gelash, Fluids 4, 83 (2019).

    Google Scholar 

  35. V. P. Ruban, Phys. Rev. E 70, 066302 (2004).

    ADS  MathSciNet  Google Scholar 

  36. V. P. Ruban, Phys. Lett. A 340, 194 (2005).

    ADS  MathSciNet  Google Scholar 

  37. V. P. Ruban, Phys. Rev. E 77, 037302 (2008).

    ADS  MathSciNet  Google Scholar 

  38. V. P. Ruban, Phys. Rev. E 77, 055307(R) (2008).

  39. V. P. Ruban, Phys. Rev. E 78, 066308 (2008).

    ADS  MathSciNet  Google Scholar 

  40. V. P. Ruban, JETP Lett. 93, 195 (2011).

    ADS  Google Scholar 

  41. V. P. Ruban, J. Exp. Theor. Phys. 114, 343 (2012).

    ADS  Google Scholar 

  42. V. P. Ruban, JETP Lett. 95, 486 (2012).

    ADS  Google Scholar 

  43. O. M. Phillips, J. Fluid Mech. 7, 340 (1960).

    ADS  MathSciNet  Google Scholar 

  44. A. A. Ivanova, V. G. Kozlov, and A. V. Chigrakov, Fluid Dyn. 39, 594 (2004).

    ADS  Google Scholar 

  45. A. A. Ivanova, V. G. Kozlov, and D. A. Polezhaev, Fluid Dyn. 40, 297 (2005).

    ADS  Google Scholar 

  46. http://www.fftw.org.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Ruban.

Additional information

Translated by I. Nikitin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruban, V.P. Waves over Curved Bottom: The Method of Composite Conformal Mapping. J. Exp. Theor. Phys. 130, 797–808 (2020). https://doi.org/10.1134/S1063776120040081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120040081

Navigation