Skip to main content
Log in

Acoustic Emission during Initiation of a Shear Band in a Metallic Glass as a Method for Verification of the Existence of Scale Invariance

  • SOLIDS AND LIQUIDS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Using the acoustic emission method, we have determined the probability density distribution function of shear band lengths in a metallic glass and demonstrated its independence of stoichiometric composition of glass and experimental conditions. The power-law form of this distribution confirms independently the observed quadratic scaling in the time dependence of the rate of shear processes in metallic glass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. J. P. Sethna, Statistical Mechanics: Entropy, Order Parameters and Complexity (Clarendon, Oxford, 2017).

    MATH  Google Scholar 

  2. G. B. West and J. H. Brown, Phys. Today 57 (9), 36 (2004).

    Article  Google Scholar 

  3. M. Zaiser, Adv. Phys. 55, 185 (2006).

    Article  ADS  Google Scholar 

  4. G. I. Barenblatt, Scaling (Cambridge Univ. Press, Cambridge, 2003).

    Book  Google Scholar 

  5. Keiiti Aki and P. G. Richards, Quantitative Seismology: Theory and Methods (W. H. Freeman, San Francisco, 1980), Vols. 1, 2.

    Google Scholar 

  6. A. Vinogradov, M. Seleznev, and I. S. Yasnikov, Scr. Mater. 130, 138 (2017).

    Article  Google Scholar 

  7. K. A. Dahmen, Y. Ben-Zion, and J. T. Uhl, Nat. Phys. 7, 554 (2011).

    Article  Google Scholar 

  8. J. Antonaglia, W. J. Wright, X. Gu, R. R. Byer, T. C. Hufnagel, M. LeBlanc, J. T. Uhl, and K. A. Dahmen, Phys. Rev. Lett. 112, 155501 (2014).

    Article  ADS  Google Scholar 

  9. G. Wang, K. C. Chan, L. Xia, P. Yu, J. Shen, and W. H. Wang, Acta Mater. 57, 6146 (2009).

    Article  ADS  Google Scholar 

  10. T. C. Hufnagel, C. A. Schuh, and M. L. Falk, Acta Mater. 109, 375 (2016).

    Article  ADS  Google Scholar 

  11. D. Klaumünzer, A. Lazarev, R. Maaß, F. H. Dalla Torre, A. Vinogradov, and J. F. Löffler, Phys. Rev. Lett. 107, 185502 (2011).

    Article  ADS  Google Scholar 

  12. A Vinogradov, Scr. Mater. 63, 89 (2010).

    Article  Google Scholar 

  13. M. Seleznev, I. S. Yasnikov, and A. Vinogradov, Mater. Lett. 225, 105 (2018).

    Article  Google Scholar 

  14. I. S. Yasnikov, M. N. Seleznev, A. V. Danyuk, and A. Yu. Vinogradov, JETP Lett. 110, 436 (2019).

    Article  ADS  Google Scholar 

  15. R. T. Qu, Z. Q. Liu, G. Wang, and Z. F. Zhang, Acta Mater. 91, 19 (2015).

    Article  ADS  Google Scholar 

  16. P. Thurnheer, R. Maaß, K. J. Laws, S. Pogatscher, and J. F. Löffler, Acta Mater. 96, 428 (2015).

    Article  ADS  Google Scholar 

  17. S. H. Carpenter and F. P. Higgins, Metall. Trans. 8A, 1629 (1977).

    Article  Google Scholar 

  18. T. T. Lamark, F. Chmelik, Y. Estrin, and P. Lukac, J. Alloys Compd. 378, 202 (2004).

    Article  Google Scholar 

  19. A. Vinogradov, I. S. Yasnikov, and Y. Estrin, J. Appl. Phys. 115, 233506 (2014).

    Article  ADS  Google Scholar 

  20. A. Vinogradov, D. Orlov, A. Danyuk, and Y. Estrin, Mater. Sci. Eng. A 621, 243 (2015).

    Article  Google Scholar 

  21. A. Vinogradov, A. Lazarev, D. V. Louzguine-Luzgin, Y. Yokoyama, S. Li, A. R. Yavari, and A. Inoue, Acta Mater. 58, 6736 (2010).

    Article  ADS  Google Scholar 

  22. D. V. Louzguine-Luzgin, A. Vinogradov, S. Li, A. Kawashima, G. Xie, and A. R. Yavari, Metall. Mater. Trans. A 42, 1504 (2010).

    Article  Google Scholar 

  23. D. V. Louzguine-Luzgin, A. Vinogradov, G. Xie, S. Li, A. Lazarev, S. Hashimoto, and A. Inoue, Philos. Mag. A 89, 2887 (2009).

    Article  ADS  Google Scholar 

  24. A. Vinogradov, A. Danyuk, and V. A. Khonik, J. Appl. Phys. 113, 153503 (2013).

    Article  ADS  Google Scholar 

  25. C. H. Scholz, Bull. Seismol. Soc. Am. 72, 1 (1982).

    Google Scholar 

  26. G. G. Kocharyan, G. N. Ivanchenko, and S. B. Kishkina, Izv., Phys. Solid Earth 52, 606 (2016).

    Article  Google Scholar 

  27. J. G. Anderson, S. G. Wesnousky, and M. W. Stirling, Bull. Seismol. Soc. Am. 86, 683 (1996).

    Article  Google Scholar 

  28. Jeen-Hwa Wang, Terr. Atmos. Ocean. Sci. 29, 589 (2018).

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research (project no. 18-08-00327).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Yasnikov.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yasnikov, I.S., Vinogradov, A.Y. Acoustic Emission during Initiation of a Shear Band in a Metallic Glass as a Method for Verification of the Existence of Scale Invariance. J. Exp. Theor. Phys. 132, 394–398 (2021). https://doi.org/10.1134/S1063776121030201

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776121030201

Navigation