Skip to main content
Log in

Sharp Change in the Exchange Bias and the Magnetic Anisotropy Symmetry at a Subthreshold Interlayer Copper Content in NiFe/Cu/IrMn Heterostructures

  • STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The NiFe/Cu/IrMn heterostructures with a variable number of interlayer Cu atoms exhibit a sharp change in the exchange-bias field, the coercive force, and the unidirectional anisotropy field at an effective copper layer thickness tCu ≈ 0.5 nm, which corresponds to incomplete coverage of the interface, i.e., to an island deposited structure. The symmetry of the angular dependence of the ferromagnetic resonance changes sharply at an incompletely coated interface (tCu = 0.5 nm), which corresponds to a transition from isolated islands to a magnetic fractal structure. This phenomenon, which can be called a “magnetic” percolation threshold is not related to the electrical resistance of the heterostructure, which decreases sharply at a significantly larger effective threshold copper layer thickness (tCu = 1.3 nm) when the interface is completely covered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. V. Baltz, A. Manchon, M. Tsoi, T. Moriyama, T. Ono, and Y. Tserkovnyak, Rev. Mod. Phys. 90, 015005 (2018).

    Article  ADS  Google Scholar 

  2. J. Y. Son, C. H. Kim, J. H. Cho, Y. H. Shin, and H. M. Jang, ACS Nano 4, 3288 (2010).

    Article  Google Scholar 

  3. J. McCord, R. Mattheis, and D. Elefant, Phys. Rev. B 70, 094420 (2004).

    Article  ADS  Google Scholar 

  4. R. Stamps, J. Phys. D 33, R247 (2000).

    Article  ADS  Google Scholar 

  5. P. K. Manna and S. M. Yusuf, Phys. Rep. 535, 61 (2014).

    Article  ADS  Google Scholar 

  6. Y. Hu, X. Li, X. Chi, A. Du, and F. Shi, J. Phys. D 51, 055001 (2018).

    Article  ADS  Google Scholar 

  7. T. R. Gao, Z. Shi, S. M. Zhou, R. Chantrell, P. Asselin, X. J. Bai, J. Du, and Z. Z. Zhang, J. Appl. Phys. 105, 053913 (2009).

    Article  ADS  Google Scholar 

  8. H. S. Jung, O. Traistaru, and H. Fujiwara, J. Appl. Phys. 95, 6849 (2004).

    Article  ADS  Google Scholar 

  9. H. Sang, Y. W. Du, and C. L. Chien, J. Appl. Phys. 85, 4931 (1999).

    Article  ADS  Google Scholar 

  10. J. Camarero, J. Sort, A. Hoffmann, J. M. Garcia-Martin, B. Dieny, R. Miranda, and J. Nogues, Phys. Rev. Lett. 95, 057204 (2005).

    Article  ADS  Google Scholar 

  11. S. H. Chung, A. Hoffmann, and M. Grimsditch, Phys. Rev. B 71, 214430 (2005).

    Article  ADS  Google Scholar 

  12. J. P. King, J. N. Chapman, M. F. Gillies, and J. C. S. Kools, J. Phys. D 34, 528 (2001).

    Article  ADS  Google Scholar 

  13. T. Q. Hung, S. Oh, B. Sinha, J. R. Jeong, D. Y. Kim, and C. Kim, J. Appl. Phys. 107, 09E715 (2010).

  14. L. Thomas, A. J. Kellock, and S. S. P. Parkin, J. Appl. Phys. 87, 5061 (2000).

    Article  ADS  Google Scholar 

  15. S. Nicolodi, L. C. C. M. Nagamine, A. D. C. Viegas, J. E. Schmidt, L. G. Pereira, C. Deranlot, F. Petroff, and J. Geshev, J. Magn. Magn. Mater. 316, e97 (2007).

    Article  ADS  Google Scholar 

  16. J. Sort, F. Garcia, B. Rodmacq, S. Auffret, and B. Dieny, J. Magn. Magn. Mater. 272, 355 (2004).

    Article  ADS  Google Scholar 

  17. L. N. Maskaeva, E. A. Fedorova, and V. F. Markov, Thin Film and Coating Technology (Ural. Univ., Yekaterinburg, 2019) [in Russian].

    Google Scholar 

  18. C. W. Nan, Y. Shen, and J. Ma, Ann. Rev. Mater. Res. 40, 131 (2010).

    Article  ADS  Google Scholar 

  19. K. Li, Z. Guo, G. Han, J. Qiu, and Y. Wu, J. Appl. Phys. 93, 6614 (2003).

    Article  ADS  Google Scholar 

  20. N. J. Gokemeijer, T. Ambrose, and C. Chien, Phys. Rev. Lett. 79, 4270 (1997).

    Article  ADS  Google Scholar 

  21. M. Gruyters, M. Gierlings, and D. Riegel, Phys. Rev. B 64, 132401 (2001).

    Article  ADS  Google Scholar 

  22. I. J. Youngs, J. Phys. D 35, 3127 (2002).

    Article  ADS  Google Scholar 

  23. Q. Li, T. Li, and J. Wu, J. Colloid Interface Sci. 239, 522 (2001).

    Article  ADS  Google Scholar 

  24. N. I. Lebovka, S. Tarafdar, and N. V. Vygornitskii, Phys. Rev. E 73, 031402 (2006).

    Article  ADS  Google Scholar 

  25. D. S. McLachlan, C. Chiteme, W. D. Heiss, and J. Wu, Phys. B (Amsterdam, Neth.) 338, 261 (2003).

  26. W. Z. Cai, S. T. Tu, and J. M. Gong, J. Comp. Mater. 40, 2131 (2006).

    Article  Google Scholar 

  27. D. S. McLachlan, K. Cai, and G. Sauti, Int. J. Refract. Met. Hard Mater. 19, 437 (2001).

    Article  Google Scholar 

  28. M. Sahimi, Phys. Rep. 306, 213 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  29. J. Geshev, S. Nicolodi, L. G. Pereira, L. C. C. M. Nagamine, and J. E. Schmidt, Phys. Rev. B 75, 214402 (2007).

    Article  ADS  Google Scholar 

  30. Y. G. Yoo, M. C. Paek, S. G. Min, and S. C. Yu, J. Magn. Magn. Mater. 290, 198 (2005).

    Article  ADS  Google Scholar 

  31. Y. G. Yoo, S. G. Min, and S. C. Yu, J. Magn. Magn. Mater. 304, e718 (2006).

    Article  Google Scholar 

  32. A. Elzwawy, A. Talantsev, and C. Kim, J. Magn. Magn. Mater. 458, 292 (2018).

    Article  ADS  Google Scholar 

  33. R. B. Morgunov, M. V. Bakhmet’ev, and A. D. Talantsev, Phys. Solid State 62, 1991 (2020).

    Article  ADS  Google Scholar 

  34. T. R. McGuire and R. I. Potter, IEEE Trans. Magn. 11, 1018 (1975).

    Article  ADS  Google Scholar 

  35. P. P. Shinde, P. Tagade, S. P. Adiga, A. Konar, S. Pandian, and K. S. Mayya, Phys. Rev. B 102, 165102 (2020).

    Article  ADS  Google Scholar 

  36. R. B. Morgunov, A. I. Dmitriev, Y. Tanimoto, J. S. Kulkarni, J. D. Holmes, and O. L. Kazakova, Phys. Solid State 50, 1103 (2008).

    Article  ADS  Google Scholar 

  37. W. Alayo, F. Pelegrini, and E. Baggio-Saitovitch, J. Magn. Magn. Mater. 377, 104 (2015).

    Article  ADS  Google Scholar 

  38. J. Lindner and K. Baberschke, J. Phys.: Condens. Matter 15, R193 (2003).

    ADS  Google Scholar 

  39. V. G. Myagkov, L. E. Bykova, V. Yu. Yakovchuk, A. A. Matsynin, D. A. Velikanov, G. S. Patrin, G. Yu. Yurkin, and G. N. Bondarenko, JETP Lett. 105, 651 (2017).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Prof. C. Kim (Institute of Science and Technologies, South Korea) for supplying the samples for investigation.

Funding

This work was supported by grant NSh-2644.2020.2 of the President of the Russian Federation for state support of leading scientific schools in terms of program AAAA-A19-119092390079-8 of the Institute of Problems of Chemical Physics, Russian Academy of Sciences.

The development of the software package for the Monte Carlo simulation of nanolayer deposition was supported by National Research Foundation of the Republic of Korea (NRF), grant no. NRF-2018R1A5A1025511 of the Government of the Republic of Korea (MSIT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. B. Morgunov.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakhmet’ev, M.V., Talantsev, A.D. & Morgunov, R.B. Sharp Change in the Exchange Bias and the Magnetic Anisotropy Symmetry at a Subthreshold Interlayer Copper Content in NiFe/Cu/IrMn Heterostructures. J. Exp. Theor. Phys. 132, 852–864 (2021). https://doi.org/10.1134/S1063776121050010

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776121050010

Navigation