Skip to main content
Log in

Semiclassical Quantization Condition for a Relativistic Bound System of Two Equal-Mass Fermions

  • ELEMENTARY PARTICLES AND FIELDS/Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

New relativistic semiclassical quantization conditions are obtained for a system of two equal-mass fermions interacting via nonsingular confining quasipotentials and quasipotentials of the funnel type. The quantization conditions are specified in the pseudoscalar, pseudovector, and vector cases. The respective analysis is performed within the Hamiltonian formulation of quantum field theory via a transition to the relativistic configuration representation for the case of a bound system formed by two relativistic spin particles of equal mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We recall that, here, \(\lambda_{\mathcal{Q}}=(\lambda_{\mathcal{Q}}^{0};{\boldsymbol{\lambda}_{\mathcal{Q}}})=\mathcal{Q}/\sqrt{\mathcal{Q}^{2}}\) is the 4-velocity of a composite particle that has the 4-momentum \(\mathcal{Q}=q_{1}+q_{2}\), all of the 4-momenta involved belonging to the upper sheets of the mass hyperboloids \(\Delta_{q,m\lambda_{\mathcal{Q}}}^{2}=\Delta_{q,m\lambda_{\mathcal{Q}}}^{02}-c^{2}{\boldsymbol{\Delta}}_{q,m\lambda_{\mathcal{Q}}}^{2}=m^{2}c^{4}\), where \(\Delta_{q,m\lambda_{\mathcal{Q}}}^{0}\) and \({\boldsymbol{\Delta}}_{q,m\lambda_{\mathcal{Q}}}\) are, respectively, the time and spatial components of the 4-vector \(\Lambda^{-1}_{\lambda_{\mathcal{Q}}}q=\Delta_{q,m\lambda_{\mathcal{Q}}}\) from Lobachevsky’s space (for more details, see [12]).

REFERENCES

  1. R. Barbieri, R. Kögerler, Z. Kunszt, and R. Gatto, Nucl. Phys. B 105, 125 (1976).

    Article  ADS  Google Scholar 

  2. R. McClary and N. Byers, Phys. Rev. D 28, 1692 (1983).

    Article  ADS  Google Scholar 

  3. E. Etim and L. Schülke, Nuovo Cim. A 77, 347 (1983).

    Article  ADS  Google Scholar 

  4. A. A. Logunov and A. N. Tavkhelidze, Nuovo Cim. 29, 380 (1963).

    Article  ADS  Google Scholar 

  5. V. G. Kadyshevsky, Nucl. Phys. B 6, 125 (1968).

    Article  ADS  Google Scholar 

  6. V. G. Kadyshevskiĭ, Sov. Phys. JETP 19, 443, 597 (1964);

    MathSciNet  Google Scholar 

  7. V. G. Kadyshevskiĭ, Sov. Phys. JETP 19, 443, 597 (1964); Sov. Phys. Dokl. 10, 46 (1965).

  8. R. N. Faustov, Ann. Phys. (N. Y.) 78, 176 (1973).

    Article  ADS  Google Scholar 

  9. N. B. Skachkov and I. L. Solovtsov, JINR Preprint No. E2-11727 (JINR, Dubna, 1978); Sov. J. Nucl. Phys. 30, 562 (1979).

    Google Scholar 

  10. N. B. Skachkov and I. L. Solovtsov, JINR Preprint No. E2-11678 (JINR, Dubna, 1978); Theor. Math. Phys. 41, 977 (1979).

    Article  Google Scholar 

  11. A. D. Linkevich, V. I. Savrin, and N. B. Skachkov, Theor. Math. Phys. 53, 955 (1982).

    Article  Google Scholar 

  12. V. G. Kadyshevsky, R. M. Mir-Kasimov, and N. B. Skachkov, Nuovo Cim. A 55, 233 (1968).

    Article  ADS  Google Scholar 

  13. Yu. D. Chernichenko, Phys. At. Nucl. 80, 707 (2017).

    Article  Google Scholar 

  14. N. B. Skachkov and I. L. Solovtsov, JINR Preprint No. E2-81-760 (JINR, Dubna, 1981); Theor. Math. Phys. 54, 116 (1983).

    Article  Google Scholar 

  15. V. I. Savrin and N. B. Skachkov, Lett. Nuovo Cim. 29, 363 (1980).

    Article  Google Scholar 

  16. A. V. Sidorov and N. B. Skachkov, Theor. Math. Phys. 46, 141 (1981);

    Article  Google Scholar 

  17. A. V. Sidorov and N. B. Skachkov, Theor. Math. Phys. 46, 141 (1981); Preprint R2-80-45, OIYaI (Dubna, 1980); V. I. Savrin, A. V. Sidorov, and N. B. Skachkov, Hadron. J. 4, 1642 (1981).

  18. D. Ebert, R. N. Faustov, and V. O. Galkin, Phys. Lett. B 635, 93 (2006).

    Article  ADS  Google Scholar 

  19. A. P. Martynenko and R. N. Faustov, Theor. Math. Phys. 64, 765 (1985);

    Article  Google Scholar 

  20. A. P. Martynenko and R. N. Faustov, Theor. Math. Phys. 64, 765 (1985); Theor. Math. Phys. 66, 264 (1986).

  21. A. D. Donkov et al., in Proceedings of the 4th International Symposium on Non-Local Field Theory, Alushta, SSSR, 1976, Preprint JINR D2-9788 (JINR, Dubna, 1976).

  22. N. B. Skachkov and I. L. Solovtsov, Sov. J. Nucl. Phys. 31, 686 (1980).

    Google Scholar 

  23. V. V. Kondratyuk and Yu. D. Chernichenko, Phys. At. Nucl. 81, 51 (2018).

    Article  Google Scholar 

  24. Yu. D. Chernichenko, Phys. At. Nucl. 82, 158 (2019).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

I am grateful to O.P. Solovtsova for discussions on the results obtained in the present study, valuable comments, and technical support and to A.E. Dorokhov, Yu.A. Kurochkin, I.S. Satsunkevich, V.V. Andreev, and A.V. Kiselev for discussions on the results quoted above, their comments, and stimulating discussions in course of this investigation.

Funding

This work was supported by the program for international cooperation of Republic of Belarus with Joint Institute for Nuclear Research (JINR, Dubna) and by the state research program for the period spanning 2016 and 2020 Convergence-2020, Microscopic World, Plasma, and Universe Subprogram.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. D. Chernichenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernichenko, Y.D. Semiclassical Quantization Condition for a Relativistic Bound System of Two Equal-Mass Fermions. Phys. Atom. Nuclei 83, 488–494 (2020). https://doi.org/10.1134/S1063778820030047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778820030047

Navigation