Skip to main content
Log in

Stability of Ion Flow and Role of Boundary Conditions in a Simplified Model of the E × B Plasma Accelerator with a Uniform Electron Mobility

  • PLASMA DYNAMICS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Resistive oscillations of axial plasma with ionization effects are analyzed in configuration similar to the Hall effect thrusters. From analysis of stationary equations we have identified different types of the steady-state plasma flow profiles and use these solutions as initial conditions in time-dependent initial value simulations. We have identified unstable regimes with intrinsic oscillations, as well as stable regions without oscillations. It was found that nonlinear oscillations may exist in different form depending on the range of plasma parameters. Single mode coherent, multi-mode with nonlinear harmonics, and incoherent (stochastic) mode regimes were identified. We have further investigated the role of boundary conditions on the characteristics of nonlinear oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. V. V. Andreev, D. V. Chuprov, V. I. Ilgisonis, A. A. Novitskii, and A. M. Umnov, Phys. Plasmas 24, 093518 (2017).

  2. A. A. Balmashnov, A. V. Kalashnikov, V. V. Kalashnikov, S. P. Stepina, and A. M. Umnov, Plasma Phys. Rep. 44, 626 (2018).

    Article  ADS  Google Scholar 

  3. D. Kahnfeld, R. Heidemann, J. Duras, P. Matthias, G. Bandelow, K. Luskow, S. Kemnitz, K. Matyash, and R. Schneider, Plasma Sources Sci. Technol. 27, 124002 (2018).

  4. Y. Yang, X. Zhou, J. X. Liu, and A. Anders, Appl. Phys. Lett. 108, 034101 (2016).

  5. C. V. Young, A. L. Fabris, and M. A. Cappelli, Appl. Phys. Lett. 106, 044102 (2015).

  6. K. V. Brushlinskii and N. S. Zhdanova, Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 3, 135 (2004).

  7. K. V. Brushlinskii and N. S. Zhdanova, Plasma Phys. Rep. 34, 1037 (2008).

    Article  ADS  Google Scholar 

  8. A. I. Morozov, in Plasma Accelerators, Ed. by L. A. Artsimovich, S. D. Grishin, G. L. Grozdovskii, L. V. Leskov, A. I. Morozov, A. M. Dorodnov, V. G. Padalka, and M. I. Pergament (Mashinostroenie, Moscow, 1973), p. 85 [in Russian].

    Google Scholar 

  9. A. I. Morozov, Plasma Phys. Rep. 29, 235 (2003).

    Article  ADS  Google Scholar 

  10. A. I. Morozov and V. V. Savelyev, in Reviews of Plasma Physics, Ed. by B. B. Kadomtsev and V. D. Shafranov (Consultants Bureau, New York, 2000), Vol. 21, p. 203.

    Google Scholar 

  11. V. P. Kim, Tech. Phys. 60, 362 (2015).

    Article  Google Scholar 

  12. G. S. Janes, J. Dotson, and T. Wilson, Report No. NP-12154 (Rev.) (AVCO-Everett Research Laboratory, Everett, MA, USA, 1962). https://www.osti.gov/biblio/4715406-electrostatic-acceleration-neutral-plasmas-momentum-transfer-through-magnetic-fields-research-report.

    Google Scholar 

  13. J. Fife, M. Martinez-Sanchez, and J. Szabo, in Proceedings of the 33rd AIAA Joint Propulsion Conference, Seattle, WA,1997, Paper AIAA97-3052.

  14. J. M. Fife, PhD Thesis (Massachusetts Institute of Technology, Cambridge, MA, USA, 1998).

  15. S. Barral and E. Ahedo, AIP Conf. Proc. 993, 439 (2008)

    Article  ADS  Google Scholar 

  16. A. I. Morozov, in Proceedings of the 24th International Electric Propulsion Conference, Moscow,1995, Paper IEPC-95-161.

  17. A. I. Morozov and V. V. Savelyev, Plasma Phys. Rep. 26, 875 (2000).

    Article  ADS  Google Scholar 

  18. S. Barral, Z. Peradzynski, K. Makowski, and M. Dudeck, High Temp. Mater. Processes: Int. Q. High-Technol. Plasma Processes 5 (2), 2001. https://doi.org/10.1615/HighTempMatProc.v5.i2.100

  19. J. P. Boeuf and L. Garrigues, J. Appl. Phys. 84, 3541 (1998).

    Article  ADS  Google Scholar 

  20. S. Barral and E. Ahedo, Phys. Rev. E 79, 046401 (2009).

  21. N. Yamamoto, T. Nakagawa, K. Komurasaki, and Y. Arakawa, Vacuum 65, 375 (2002).

    Article  ADS  Google Scholar 

  22. K. Hara, M. J. Sekerak, I. D. Boyd, and A. D. Gallimore, Phys. Plasmas 21, 122103 (2014).

  23. L. Q. Wei, L. Han, D. R. Yu, and N. Guo, Chin. Phys. B 24, 055201 (2015).

  24. N. J. Fisch and A. Fruchtman, Modeling the Hall thruster, PPPL rep. 8, 1998.

  25. A. Fruchtman, N. J. Fisch, and Y. Raitses, Phys. Plasmas 8, 1048 (2001).

    Article  ADS  Google Scholar 

  26. E. Ahedo, J. M. Gallardo, and M. Martinez-Sanchez, Phys. Plasmas 9, 4061 (2002).

    Article  ADS  Google Scholar 

  27. A. Smolyakov, O. Chapurin, I. Romadanov, Y. Raitses, and I. Kaganovich, AIAA Propulsion and Energy Forum, AIAA 2019-4080 (2019). https://doi.org/10.2514/6.2019-4080

  28. I. G. Mikellides and A. L. Ortega, Plasma Sources Sci. Technol. 28, 014003 (2019).

  29. J. P. Boeuf, Phys. Plasmas 26, 072113 (2019).

  30. L. Dorf, V. Semenov, and Y. Raitses, Appl. Phys. Lett. 83, 2551 (2003).

    Article  ADS  Google Scholar 

  31. A. Fruchtman, N. J. Fisch, and Y. Raitses, Phys. Plasmas 8, 1048 (2001).

    Article  ADS  Google Scholar 

  32. A. Smirnov, Y. Raitses, and N. J. Fisch, IEEE Trans. Plasma Sci. 36, 1998 (2008).

    Article  ADS  Google Scholar 

  33. A. Smirnov, Y. Raitses, and N. J. Fisch, Phys. Plasmas 14, 057106 (2007).

  34. A. Smirnov, Y. Raitses, and N. J. Fisch, J. Appl. Phys. 92, 5673 (2002).

    Article  ADS  Google Scholar 

  35. N. J. Fisch and A. Fruchtman, in Proceedings of the 34st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Cleveland, USA,1998, Paper AIAA98-3500.

  36. B. D. Dudson, A. Allen, G. Breyiannis, E. Brugger, J. Buchanan, L. Easy, S. Farley, I. Joseph, M. Kim, A. D. McGann, J. T. Omotani, M. V. Umansky, N. R. Walkden, T. Xia, and X. Q. Xu, J. Plasma Phys. 81, 365810104 (2015).

  37. N. Gascon, M. Dudeck, and S. Barral, Phys. Plasmas 10, 4123 (2003).

    Article  ADS  Google Scholar 

  38. A. Cohen-Zur, A. Fruchtman, J. Ashkenazy, and A. Gany, Phys. Plasmas 9, 4363 (2002).

    Article  ADS  Google Scholar 

  39. E. Ahedo and J. Rus, J. Appl. Phys. 98, 043306 (2005).

  40. L. Dorf, Y. Raitses, and N. J. Fisch, Phys. Plasmas 13, 057104 (2006).

  41. L. Dorf, Y. Raitses, and N. J. Fisch, J. Appl. Phys. 97, 103309 (2005).

  42. M. Keidar, J. Appl. Phys. 103, 053309 (2008).

  43. M. J. Sekerak, R. Hofer, J. Polk, B. Longmier, A. Gallimore, and D. Brown, in Proceedings of the 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, San Jose, CA, USA,2013, Paper AIAA13-5468.

  44. K. Hara, M. J. Sekerak, I. D. Boyd, and A. D. Gallimore, J. Appl. Phys. 115, 203304 (2014).

  45. I. Romadanov, Y. Raitses, and A. Smolyakov, Plasma Sources Sci. Technol. 27, 094006 (2018).

  46. T. Furukawa, T. Miyasaka, and T. Fujiwara, Trans. Jpn. Soc. Aeronaut. Space Sci. 44, 164 (2001).

    Article  ADS  Google Scholar 

  47. D. R. Yu, C. S. Wang, L. Q. Wei, C. Gao, and G. Yu, Phys. Plasmas 15, 113503 (2008).

  48. C. Wang, L. Wei, and D. Yu, Contrib. Plasma Phys. 51, 981 (2011).

    Article  ADS  Google Scholar 

  49. L. Q. Wei, K. Han, C. S. Wang, H. Li, C. H. Zhang, and D. R. Yu, J. Vac. Sci. Technol., A 30, 061304 (2012).

  50. I. Romadanov, Y. Raitses, A. Diallo, K. Hara, I. D. Kaganovich, and A. I. Smolyakov, Phys. Plasmas 25, 033501 (2018).

  51. I. Romadanov, A. Smolyakov, Y. Raitses, I. Kaganovich, T. Tian, and S. Ryzhkov, Phys. Plasmas 23, 122111 (2016).

  52. A. I. Smolyakov, O. Chapurin, W. Frias, O. Koshkarov, I. Romadanov, T. Tang, M. Umansky, Y. Raitses, I. D. Kaganovich, and V. P. Lakhin, Plasma Phys. Controlled Fusion 29, 014041 (2017).

  53. I. Romadanov, E. Raitses, and A. Smolyakov, Plasma Phys. Rep. 45, 134 (2019).

    Article  ADS  Google Scholar 

  54. S. Chable and F. Rogier, Phys. Plasmas 12, 033504 (2005).

  55. O. Koshkarov, A. I. Smolyakov, A. Kapulkin, Y. Raitses, and I. Kaganovich, Phys. Plasmas 25, 061209 (2018).

  56. O. Koshkarov, A. I. Smolyakov, I. V. Romadanov, O. Chapurin, M. V. Umansky, Y. Raitses, and I. D. Kaganovich, Phys. Plasmas 25, 011604 (2018).

  57. O. Koshkarov, A. I. Smolyakov, I. D. Kaganovich, and V. I. Ilgisonis, Phys. Plasmas 22, 052113 (2015).

Download references

ACKNOWLEDGMENTS

The authors are grateful to Y. Raitses for many useful discussions.

Funding

This work was supported in part by the Russian Science Foundation, Project 17-12-01470.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Romadanov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romadanov, I.V., Smolyakov, A.I., Sorokina, E.A. et al. Stability of Ion Flow and Role of Boundary Conditions in a Simplified Model of the E × B Plasma Accelerator with a Uniform Electron Mobility. Plasma Phys. Rep. 46, 363–373 (2020). https://doi.org/10.1134/S1063780X20040108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X20040108

Keywords:

Navigation