Skip to main content
Log in

Fast-Scale Perturbations of Electromagnetic Fields upon Development of Arc Discharges at an Early Stage of Disruption in the T-10 Tokamak Plasma

  • TOKAMAKS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The conditions leading to the development of fast-scale (  f ~ 0.2–1.5 MHz) electromagnetic oscillations in the periphery regions of plasma at an early stage of disruption in the T-10 tokamak are analyzed. Spatial and temporal characteristics of fast-scale oscillations are investigated by moving magnetic and electric probes mounted inside the tokamak vacuum chamber. Analysis reveals that initiation of the fast-scale oscillations can be related to the development of arc discharges in plasma near the T-10 tokamak limiters. The transition to a major disruption and collapse of the plasma current is accompanied by a sharp increase in the amplitude of the fast-scale electromagnetic oscillations. Monitoring the fast-scale electromagnetic oscillations at the plasma periphery can be an important trigger for systems to safely quench the discharge in a to-kamak.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. T. C. Hender, J. C. Wesley, J. Bialek, A. Bondeson, A. H. Boozer, R. J. Buttery, A. Garofalo, T. P. Goodman, R. S. Granetz, Y. Gribov, O. Gruber, M. Gryaznevich, G. Giruzzi, S. Gunter, N. Hayashi, et al., Nucl. Fusion 47, S128 (2007). http://stacks.iop.org/0029-5515/47/i=6/a=S03.

    Article  Google Scholar 

  2. B. B. Kadomtsev, Tokamak Plasma: A Complex Physical System. Plasma Physics Series (IOP Publishing Ltd, Bristol and Philadelphia, 1992).

    Google Scholar 

  3. F. C. Schuller, Plasma Phys. Controlled Fusion 37, A135 (1995).

    Article  ADS  Google Scholar 

  4. M. Lehnen, K. Aleynikova, P. B. Aleynikov, D. J. Campbell, P. Drewelow, N. W. Eidietisc, Yu. Gasparyan, R. S. Granetz, Y. Gribov, N. Hartmann, E. M. Hollmann, V. A. Izzo, S. Jachmich, S.-H. Kim, M. Kocan, et al., J. Nucl. Mater. 463, 39 (2015). https://doi.org/10.1016/j.jnucmat.2014.10.075

    Article  ADS  Google Scholar 

  5. G. McCracken, J. Nucl. Mater. 93–94, 3 (1980). https://doi.org/10.1016/0022-3115(80)90299-8

    Article  ADS  Google Scholar 

  6. G. Federici, C. H. Skinner, J. N. Brooks, J. P. Coad, and C. Grisolia, Report No. PPPL-3531 (IPP-9/128) (Princeton Plasma Physics Laboratory, Princeton, USA, 2001). https://doi.org/10.2172/773280

  7. A. V. Nedospasov, Sov. Phys.–Usp. 30, 620 (1987). https://doi.org/10.1070/PU1987v030n07ABEH002928

    Article  ADS  Google Scholar 

  8. M. Maeno, H. Ohtsuka, S. Yamamoto, T. Yamamoto, N. Suzuki, N. Fujisawa, and N. Ogiwara, Nucl. Fusion 20, 1415 (1980). https://doi.org/10.1088/0029-5515/20/11/009

    Article  ADS  Google Scholar 

  9. P. V. Savrukhin, Phys. Rev. Lett. 86, 3036 (2001). https://doi.org/. RevLett.86.3036

  10. D. Biskamp, Magnetic Reconnection in Plasmas (Cambridge University Press, Cambridge, 2000).

    Book  Google Scholar 

  11. A. Anders, Cathodic Arcs. From Fractal Spots to Energetic Condensation (Springer Series on Atomic, Optical, and Plasma Physics) (Springer, Berlin, 2008).

    Book  Google Scholar 

  12. S. Kajita, M. Fukumoto, M. Tokitani, T. Nakano, Y. Noiri, N. Ohno, S. Masuzaki, S. Takamura, N. Yoshi-da, and Y. Ueda, Nucl. Fusion 53, 053013 (2013). https://doi.org/10.1088/0029-5515/53/5/053013

  13. D. J. Ward and J. A. Wesson, Nucl. Fusion 32, 1117 (1992). https://doi.org/10.1088/0029-5515/32/7/I03

    Article  ADS  Google Scholar 

  14. D. H. J. Goodall, J. Nucl. Mater. 111/112, 11 (1982). https://doi.org/10.1016/0022-3115(82)90174-X

    Article  ADS  Google Scholar 

  15. G. A. Bobrovskii and A. A. Kondratev, Sov. J. Plasma Phys. 3, 115 (1977).

    ADS  Google Scholar 

  16. B. Jüttner, M. Laux, J. Lingertat, P. Pech, P. Siemroth, and H. Wolff, Nucl. Fusion 20, 497 (1980). https://doi.org/10.1088/0029-5515/20/4/012

    Article  ADS  Google Scholar 

  17. L. M. Bogomolov and A. V. Nedospasov, J. Nucl. Mater. 162−164, 439 (1989). https://doi.org/10.1016/0022-3115(89)90309-7

  18. G. A. Mesyats, Plasma Phys. Controlled Fusion 47, A109 (2005). https://doi.org/10.1088/0741-3335/47/5A/010

    Article  ADS  Google Scholar 

  19. S. A. Barengolts, G. A. Mesyats, and M. M. Tsventoukh, Nucl. Fusion 50, 125004 (2010). https://doi.org/10.1088/0029-5515/50/12/125004

  20. P. Mioduszewski, R. Clausing, and L. Heatherly, J. Nucl. Mater. 85–86, 963 (1979). https://doi.org/10.1016/0022-3115(79)90385-4

  21. P. V. Savrukhin and E. A. Shestakov, Rev. Sci. Instrum. 83, 013505 (2012). https://doi.org/10.1063/1.3675577

  22. G. M. McCracken and P. E. Stott, Nucl. Fusion 19, 889 (1979). https://doi.org/10.1088/0029-5515/19/7/004

    Article  ADS  Google Scholar 

  23. R. H. Lovberg, in Plasma Diagnostic Techniques, Ed. by R. H. Huddlestone and S. L. Leonard (Academic Press, New York, 1965), Chapter 3.

    Google Scholar 

  24. E. J. Strait, Rev. Sci. Instrum. 77, 023502 (2006). https://doi.org/10.1063/1.2166493

  25. S. Mirnov, I. Semenov, E. Fredrickson, R. Budny, Z. Chang, K. McGuire, H. Park, H. Takahashi, G. Taylor, S. Von Goeler, L. Zakharov, and S. Zweben, Phys. Plasmas 5, 3950 (1998). https://doi.org/10.1063/1.873114

    Article  ADS  Google Scholar 

  26. W. W. Heidbrink, E. D. Fredrickson, N. N. Gorelenkov, T. L. Rhodes, and M. A. Van Zeeland, Nucl. Fusion 46, 324 (2006). https://doi.org/10.1088/0029-5515/46/2/016

    Article  ADS  Google Scholar 

  27. A. Fasoli, D. Borba, C. Gormezano, R. Heeter, A. Jaun, J. Jacquinot, W. Kerner, Q. King, J. B. Lister, S. Sharapov, D. Start, and L. Villard, Plasma Phys. Controlled Fusion 39, B287 (1997). https://doi.org/10.1088/0741-3335/39/12B/022

    Article  Google Scholar 

  28. D. Testa, A. Corne, G. Farine, C. Jacq, T. Maeder, and M. Toussaint, Fusion Eng. Des. 96−97, 989 (2015). https://doi.org/10.1016/j.fusengdes.2015.05.065

  29. G. I. Abdullina, L. G. Askinazi, A. A. Belokurov, N. A. Zhubr, V. A. Kornev, S. V. Krikunov, S. V. Lebedev, D. B. Razumenko, and A. S. Tukachinskii, Tech. Phys. Lett. 44, 108 (2018).https://doi.org/10.21883/PJTF.2018.03.45578.17063

    Article  Google Scholar 

  30. K. McGuire, E. Fredrickson, C. E. Bush, N. Bretz, A. Cavallo, A. Janos, Y. Nagayama, H. Park, J. Schivell, G. Taylor, R. Nazikian, and A. T. Ramsey, J. Nucl. Mater. 176−177, 711 (1990). https://doi.org/10.1016/0022-3115(90)90131-6

  31. A. Kirk, N. Ben Ayed, G. Counsell, B. Dudson, T. Eich, A. Herrmann, B. Koch, R. Martin, A. Meakins, S. Saarelma, R. Scannell, S. Tallents, M. Walsh, H. R. Wilson, and the MAST team, Plasma Phys. Controlled Fusion 48, B433 (2006). https://doi.org/10.1088/0741-3335/48/12B/S41

    Article  Google Scholar 

  32. C. Ionita, N. Vianello, H. W. Müller, F. Mehlmann, M. Zuin, V. Naulin, J. J. Rasmussen, V. Rohde, R. Ca-vazzana, C. Lupu1, M. Maraschek, R. W. Schrittwieser, P. C. Balan, and the ASDEX Upgrade Team, J. Plasma Fusion Res. Series 8, 413 (2009). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.361.4342&rep=rep1&type=pdf.

    Google Scholar 

  33. V. A. Vershkov, D. V. Sarychev, G. E. Notkin, D. A. Shelukhin, M. A. Buldakov, Yu. N. Dnestrovskij, S. A. Grashin, N. A. Kirneva, V. A. Krupin, L. A. Klyuchnikov, A. V. Melnikov, S. V. Neudatchin, M. R. Nurgaliev, Yu. D. Pavlov, P. V. Savrukhin, and the T-10 Team, Nucl. Fusion 57, 1020172017 (2017). https://doi.org/10.1088/1741-4326/aa6b0e

  34. N. V. Volkov, A. M. Ivanov, D. A. Kakurin, P. V. Martynov, S. A. Savrukhin, and S. A. Hokin, Sov. J. Plasma Phys. 16, 295 (1990).

    Google Scholar 

  35. P. V. Savrukhin, E. A. Shestakov, A. I. Ermolaeva, and R. Yu. Solomatin, J. Phys.: Conf. Ser 907, 012006 (2017). https://doi.org/10.1088/1742-6596/907/1/012006

  36. V. P. Budaev, L. N. Khimchenko, S. A. Grashin, and A. V. Karpov, Vopr. At. Nauki Tekh., Ser.: Termoyad. Sint. 42 (1), 51 (2019). http://vant.iterru.ru/engvant_2019_1/4.pdf.

  37. E. D. Fredrickson, K. M. McGuire, Z. Y. Chang, A. Janos, J. Manickam, G. Taylor, S. Mirnov, and I. Semenov, Phys. Plasmas 3, 2620 (1996). https://doi.org/10.1063/1.871975

    Article  ADS  Google Scholar 

  38. R. C. Davidson, Theory of Nonneutral Plasmas (Imperial College Press, London, 2000).

    Google Scholar 

  39. P. C. Stangeby and G. M. McCracken, Nucl. Fusion 30, 1225 (1990). https://doi.org/10.1088/0029-5515/30/7/005

    Article  Google Scholar 

  40. A. Herrmann, M. Balden, M. Laux, K. Krieger, H. W. Muller, R. Pugno, V. Rohde, and ASDEX U-pgrade Team, J. Nucl. Mater. 390−391, 747 (2009). https://doi.org/10.1016/j.jnucmat.2009.01.296

  41. T. Hirai, S. Carpentier-Chouchana, F. Escourbiac, S. Panayotis, A. Durocher, L. Ferrand, M. Garcia-Martinez, J. P. Gunn, V. Komarov, M. Merola, R. A. Pitts, and G. De Temmerman, Fusion Eng. Des. 127, 66 (2018). https://doi.org/10.1016/j.fusengdes.2017.12.007

    Article  Google Scholar 

  42. I. Bykov, C. P. Chrobak, T. Abrams, D. L. Rudakov, E. A. Unterberg, W. R. Wampler, E. M. Hollmann, R. A. Moyer, J. A. Boedo, B. Stahl, E. T. Hinson, J. H. Yu, C. J. Lasnier, M. Makowski, and A. G. McLean, Phys. Scr. 2017 (T170), 014034 (2017). https://doi.org/10.1088/1402-4896/aa8e34

  43. K. Ertl, Asdex Team, and B. Jüttner, Nucl. Fusion 25, 1413 (1985). https://doi.org/10.1088/0029-5515/25/10/003

    Article  Google Scholar 

  44. V. Rohde, N. Endstrasser, U. V. Toussaint, M. Balden, T. Lunt, R. Neu, A. Hakola, J. Bucalossi, and ASDEX Upgrade Team, J. Nucl. Mater. 415, S46 (2011). https://doi.org/10.1016/j.jnucmat.2010.11.045

    Article  Google Scholar 

  45. V. Rohde, M. Balden, and the ASDEX Upgrade Team, Nucl. Mater. Energy 12, 429 (2017). https://doi.org/10.1016/j.nme.2017.09.004

    Article  Google Scholar 

  46. I. Bykov, C. P. Chrobak, T. Abrams, D. L. Rudakov, E. A. Unterberg, W. R. Wampler, E. M. Hollmann, R. A. Moyer, J. A. Boedo, B. Stahl, E. T. Hinson, J. H. Yu, C. J. Lasnier, M. Makowski, and A. G. McLean, Phys. Scr. 2017 (T170), 014034 (2017). https://doi.org/10.1088/1402-4896/aa8e34

  47. D. L. Rudakov, C. P. Chrobak, R. P. Doerner, S. I. Krasheninnikov, R. A. Moyer, K. R. Umstadter, W. R. Wampler, and C. P. C. Wong, J. Nucl. Mater. 438 (Suppl.), S805 (2013). https://doi.org/10.1016/j.jnucmat.2013.01.173

    Article  ADS  Google Scholar 

  48. J. Matejicek, V. Weinzettl, M. Vilemova, T. W. Morgan, G. De Temmerman, M. Dimitrova, J. Cavalier, J. Adamek, J. Seidl, and A. Jager, J. Nucl. Mater. 492, 204 (2017). https://doi.org/10.1016/j.jnucmat.2017.05.032

    Article  ADS  Google Scholar 

  49. D. U. B. Aussems, D. Nishijima, C. Brandt, H. J. Van der Meiden, M. Vilemova, J. Matejicek, G. De. Temmerman, R. P. Doerner, and N. J. Lopes Cardozo, J. Nucl. Mater. 463, 303 (2015). https://doi.org/10.1016/j.jnucmat.2014.09.009

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank A.M. Kakurin, D.V. Sarychev, D.S. Sergeev, R.Yu. Solomatin, and A.V. Sushkov for providing some of the diagnostics data; and they thank G.E. Notkin, S.G. Maltsev, Yu.D. Pavlov, D.V. Ryzhakov, V.P. Budaev, L.N. Khimchenko, and S.A. Grashin for supporting this research.

Funding

The measurements described in Section 2 were carried out with the support of Rosatom State Atomic Energy Corporation (contract 2019). The analysis presented in Section 5 was supported by the Kurchatov Institute National Research Center, order no. 1111 dated June 1, 2019.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. V. Savrukhin, E. A. Shestakov or A. V. Khramenkov.

Additional information

Translated by I. Shumai

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savrukhin, P.V., Shestakov, E.A. & Khramenkov, A.V. Fast-Scale Perturbations of Electromagnetic Fields upon Development of Arc Discharges at an Early Stage of Disruption in the T-10 Tokamak Plasma. Plasma Phys. Rep. 46, 349–362 (2020). https://doi.org/10.1134/S1063780X2004011X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X2004011X

Navigation