Skip to main content
Log in

Microstructural Evolution of MOVPE Grown GaN by the Carrier Gas

  • SURFACES, INTERFACES, AND THIN FILMS
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

We report the effect of total carrier gas flow of GaN during both GaN nucleation layer and high temperature GaN growth steps on structural, optical, electrical and morphological properties. The formation of dislocations in GaN layer and their effects were investigated in detail as a function of carrier gas flow. It has been found that the more carrier gas requires longer recovery time for transition from 3D (3 dimensional) to 2D growth and results in smaller edge-type dislocation density. The images obtained from the AFM measurements have shown terraces widths varying between 60–150 nm depending on the hydrogen flow rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. H. Morkoç, Nitride Semiconductor Devices: Fundamentals and Applications (Wiley, Weinheim, 2013).

    Book  Google Scholar 

  2. M. Razeghi, IEEE Photon. J. 3, 263 (2011).

    Article  ADS  Google Scholar 

  3. S. Kolluri, Y. Pei, S. Keller, S. P. Denbaars, and U. K. Mishra, IEEE Electron Dev. Lett. 30, 584 (2009).

    Article  ADS  Google Scholar 

  4. Q. Cai, M. Ge, J. Xue, L. Hu, D. Chen, H. Lu, R. Zhang, and Y. Zheng, IEEE Photon. J. 9, 6803507 (2017).

    Google Scholar 

  5. M. Kneissl and J. Rass, III-Nitride Ultraviolet Emitters Technology and Applications (Springer, London, 2016).

    Book  Google Scholar 

  6. H. Jeong, R. S. Montiel, G. Lerondel, and M. S. Jeong, Sci. Rep. 7, 6803507 (2017).

    Google Scholar 

  7. I. Demir, Y. Robin, R. McClintock, S. Elagoz, K. Zekentes, and M. Razeghi, Phys. Status Solidi A 214, 1600363 (2017).

    Article  ADS  Google Scholar 

  8. H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, Appl. Phys. Lett. 48, 353 (1986).

    Article  ADS  Google Scholar 

  9. L. Shang, T. Lu, G. Zhai, Z. Jia, H. Zhang, S. Ma, T. Li, J. Liang, X. Liu, and B. Xu, RSC Adv. 5, 51201 (2015).

  10. B. P. Keller, S. Keller, D. Kapolnek, W.-N. Jiang, Y.-F. Wu, H. Masui, X. Wu, B. Heying, J. S. Speck, U. K. Mishra, and S. P. Denbaars, J. Electron. Mater. 24, 1707 (1995).

    Article  ADS  Google Scholar 

  11. M. S. Yi, H. H. Lee, D. J. Kim, S. J. Park, D. Y. Noh, C. C. Kim, and J. H. Je, Appl. Phys. Lett. 75, 2187 (1999).

    Article  ADS  Google Scholar 

  12. A. E. Wickenden, D. D. Koleske, R. L. Henry, R. J. Gorman, M. E. Twigg, M. Fatemi, J. A. Freitas, and W. J. Moore, J. Electron. Mater. 29, 21 (2000).

    Article  ADS  Google Scholar 

  13. T. Ito, M. Sumiya, Y. Takano, K. Ohtsuka, and S. Fuke, Jpn. J. Appl. Phys. 38, 649 (1999).

    Article  ADS  Google Scholar 

  14. S. Kim, J. Oh, J. Kang, D. Kim, J. Won, J. W. Kim, and H. K. Cho, J. Cryst. Growth 262, 7 (2004).

    Article  ADS  Google Scholar 

  15. I. Altuntas, I. Demir, A. E. Kasapoğlu, S. Mobtakeri, E. Gür, and S. Elagoz, J. Phys. D: Appl. Phys. 51, 035105 (2018).

    Article  ADS  Google Scholar 

  16. J. Han, T. B. Ng, R. M. Biefeld, M. H. Crawford, and D. M. Follstaedt, Appl. Phys. Lett. 71, 3114 (1997).

    Article  ADS  Google Scholar 

  17. H. X. Wang, Y. Amijima, Y. Ishihama, and S. Sakai, J. Cryst. Growth 233, 681 (2001).

    Article  ADS  Google Scholar 

  18. Y. S. Cho, H. Hardtdegen, N. Kaluza, N. Thillosen, R. Steins, Z. Sofer, and H. Lüth, Phys. Status Solidi C 3, 1408 (2006).

    Article  ADS  Google Scholar 

  19. A. S. Barker, Jr. and M. Ilegems, Phys. Rev. B 7, 743 (1973).

    Article  ADS  Google Scholar 

  20. T. Böttcher, S. Einfeldt, S. Figge, R. Chierchia, H. Heinke, D. Hommel, and J. S. Speck, Appl. Phys. Lett. 78, 1976 (2001).

    Article  ADS  Google Scholar 

  21. R. S. Q. Fareed, S. Juodkazis, S. H. Chung, T. Sugahara, and S. Sakai, Mater. Chem. Phys. 64, 260 (2000).

    Article  Google Scholar 

  22. T. Hino, S. Tomiya, T. Miyajima, K. Yanashima, S. Hashimoto, and M. Ikeda, Appl. Phys. Lett. 76, 3421 (2000).

    Article  ADS  Google Scholar 

  23. J. H. Ryu, Y. S. Katharria, H. Y. Kim, H. K. Kim, K. B. Ko, N. Han, J. H. Kang, Y. J. Park, E.-K. Suh, and C.-H. Hong, Appl. Phys. Lett. 100, 181904 (2012).

    Article  ADS  Google Scholar 

  24. A. H. Park, T. H. Seo, S. Chandramohan, G. H. Lee, K. H. Min, S. Lee, M. J. Kim, Y. G. Hwang, and E. K. Suh, Nanoscale 7, 15099 (2015).

    Article  ADS  Google Scholar 

  25. M. Qi, G. Li, V. Protasenko, P. Zhao, J. Verma, B. Song, S. Ganguly, M. Zhu, Z. Hu, X. Yan, A. Mintairov, H. Grace Xing, and D. Jena, Appl Phys. Lett. 106, 041906 (2015).

    Article  ADS  Google Scholar 

  26. M. Mishra, T. C. S. Krishna, N. Aggarwal, and G. Gupta, Appl. Surf. Sci. 345, 440 (2015).

    Article  ADS  Google Scholar 

  27. R. Y. Korotkov, F. Niu, J. M. Gregie, and B. W. Wessels, Phys. B (Amsterdam, Neth.) 308, 26 (2001).

  28. H. Wang, Y. Huang, Q. Sun, J. Chen, L. L. Wang, J. J. Zhu, D. G. Zhao, S. M. Zhang, D. S. Jiang, Y. T. Wang, and H. Yang, Appl. Phys. Lett. 89, 092114 (2006).

    Article  ADS  Google Scholar 

  29. T. Hino, S. Tomiya, T. Miyajima, K. Yanashima, S. Hashimoto, and M. Ikeda, Appl. Phys. Lett. 76, 3421 (2000).

    Article  ADS  Google Scholar 

  30. L. Macht, J. L. Weyher, A. Grzegorczyk, and P. K. Larsen, Phys. Rev. B 71, 073309 (2005).

    Article  ADS  Google Scholar 

  31. D. G. Zhao, D. S. Jiang, Hui Yang, J. J. Zhu, Z. S. Liu, S. M. Zhang, J. W. Liang, X. Li, X. Y. Li, and H. M. Gong, Appl. Phys. Lett. 88, 241917 (2006).

    Article  ADS  Google Scholar 

  32. F. Schubert, S. Wirth, F. Zimmermann, J. Heitmann, and T. M. S. Schmult, Sci. Technol. Adv. Mater. 17, 239 (2016).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors acknowledge the usage of Nanophotonics Research and Application Center at Cumhuriyet University (CUNAM) facilities. This work is supported by the TUBITAK under project nos. 113G103 and 115E109 and by Scientific Research Project Fund of Cumhuriyet University under the project number M-699. The authors thank Ms. A. Alev Kizilbulut from ERMAKSAN Optoelectronics for room temperature PL measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Elagoz.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demir, I., Altuntas, I., Kasapoğlu, A.E. et al. Microstructural Evolution of MOVPE Grown GaN by the Carrier Gas. Semiconductors 52, 2030–2038 (2018). https://doi.org/10.1134/S1063782618160066

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782618160066

Keywords:

Navigation