Skip to main content
Log in

Gold Nanoparticles Adsorbed on Tungsten: Effect of Sodium Atom Deposition and Heating

  • SEMICONDUCTORS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

We studied the electronic structure of gold nanoparticles deposited on a tungsten surface before and after the deposition of sodium atoms with subsequent heating at T = 630 K by in situ photoelectron spectroscopy in ultrahigh vacuum. The photoemission spectra from the valence band and core levels of Au 4f and Na 2p were studied upon synchrotron excitation in the photon energy range of 80–600 eV. The changes in the spectra of the valence band and core levels of Au 4f and Na 2p are associated with a change in the surface topography caused by the deposition of sodium atoms and heating, which led to an increase in the surface area by several times. The surface topography and cathodoluminescence of a layer of gold nanoparticles deposited on a tungsten surface are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. P. Priecel, H. A. Salami, R. H. Padilla, Z. Zhong, and J. A. L. Sanchez, Chin. J. Catal. 37, 1619 (2016).

    Article  Google Scholar 

  2. X.-M. Ma, M. Sun, Y. Lin, Y.-J. Liu, F. Luo, L.-H. Guo, B. Qiu, Z.-Y. Lin, and G.-N. Chen, Chin. J. Anal. Chem. 46, 1 (2018).

    Article  Google Scholar 

  3. P. G. Jamkhande, N. W. Ghule, A. H. Bamer, and M. G. Kalaskar, J. Drug Deliv. Sci. Technol. 53, 101174 (2019).

    Article  Google Scholar 

  4. Y. Kumari, G. Kaur, R. Kumar, S. K. Singh, M. Gulati, R. Khursheed, A. Clarisse, K. Gowthamarajan, V. V. S. N. R. Karri, R. Mahalingam, D. Ghosh, A. Awasthi, R. Kumar, A. K. Yadav, B. Kapoor, et al., Adv. Colloid Interf. Sci. 274, 102037 (2019).

    Article  Google Scholar 

  5. G. Korotcenkov, V. Brinzari, and B. K. Cho, Microchim. Acta 183, 1033 (2016).

    Article  Google Scholar 

  6. M. Salmeron, S. Ferrer, M. Jazzar, and G. A. Somorjai, Phys. Rev. B 28, 1158 (1983).

    Article  ADS  Google Scholar 

  7. J. A. Rodriguez and M. Kuhn, Surf. Sci. 330, L657 (1995).

    Article  ADS  Google Scholar 

  8. J. J. Kolodziej, T. E. Madey, W. Keister, and J. E. Rowe, Phys. Rev. B 62, 5150 (2000).

    Article  ADS  Google Scholar 

  9. B. Balamurugana and T. Maruyama, Appl. Phys. Lett. 87, 143105 (2005).

    Article  ADS  Google Scholar 

  10. A. Howard, D. N. S. Clark, C. E. J. Mitchell, R. G. Egdell, and V. R. Dhanak, Surf. Sci. 518, 210 (2002).

    Article  ADS  Google Scholar 

  11. G. Kumar, L. Tibbitts, J. Newell, B. Panthi, A. Mukhopadhyay, R. M. Rioux, C. J. Pursell, M. Janik, and B. D. Chandler, Nat. Chem. 10, 268 (2018).

    Article  Google Scholar 

  12. C. D. de Souza, B. R. Nogueira, and M. E. C. M. Rostelato, J. Alloys Compd. 798, 714 (2019).

    Article  Google Scholar 

  13. M. Sui, P. Pandey, M.-Yu Li, Q. Zhang, S. Kunwar, and J. Lee, Appl. Surf. Sci. 393, 23 (2017).

    Article  ADS  Google Scholar 

  14. S. Tanuma, C. J. Powell, and D. R. Penn, Surf. Interface Anal. 43, 689 (2011).

    Article  Google Scholar 

  15. H. S. Kim, S. Y. Shin, S. H. Uhm, J. Han, H. N. Hwang, and B. Kim, Chem. Phys. Chem. 10, 1270 (2009).

    Article  Google Scholar 

  16. S. Mao, J. Liu, Y. Pan, J. Lee, Z. Yao, P. Pandey, S. Kunwar, Z. Zhu, W. Shen, L. A. Belfiore, and J. Tang, Appl. Surf. Sci. 495, 143575 (2019).

    Article  Google Scholar 

  17. S. Mao, P. Pandey, M.-Y. Li, Q. Zhang, S. Kunwar, and J. Lee, J. Mater. Sci. 52, 391 (2017).

    Article  ADS  Google Scholar 

  18. N. Masoud, T. Partsch, K. P. de Jong, and P. E. de Jongh, Gold Bull. 52, 105 (2019).

    Article  Google Scholar 

  19. M. Yu. Smirnov, E. I. Vovk, A. V. Kalinkin, E. Yu. Gerasimov, and V. I. Bukhtiyarov, Russ. Chem. Bull. 63, 2733 (2014).

    Article  Google Scholar 

  20. M. V. Grishin, A. K. Gatin, S. Yu. Sarvadii, and B. R. Shub, Khim. Bezopasn., No. 2, 23 (2018).

  21. H. Liao, C. L. Nehl, and J. H. Hafner, Nanomedicine 1, 201 (2006).

    Article  Google Scholar 

  22. D. A. Schultz, Curr. Opin. Biotechnol. 14, 13 (2003).

    Article  Google Scholar 

  23. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, J. Phys. Chem. B 107, 668 (2003).

    Article  Google Scholar 

  24. M. V. Knat’ko and M. N. Lapushkin, Tech. Phys. 58, 827 (2013).

    Article  Google Scholar 

  25. I. Lindau, and W. E. Spicer, J. Electron. Spectrosc. 3, 409 (1974).

    Article  Google Scholar 

  26. V. Chegel, O. Rachkov, A. Lopatynskyi, S. Ishihara, I. Yanchuk, Y. Nemoto, J. P. Hill, and K. Ariga, J. Phys. Chem. C 116, 2683 (2012).

    Article  Google Scholar 

  27. Blakey, Z. Merican, and K. J. Thurecht, Langmuir 29, 8266 (2013).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research project was supported by a Russian–German laboratory at BESSY II. The authors are grateful to HZB for allocating the synchrotron beam time. The authors are grateful to K.P. Kotlyar for help in preparing the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Lapushkin.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dement’ev, P.A., Ivanova, E.V., Lapushkin, M.N. et al. Gold Nanoparticles Adsorbed on Tungsten: Effect of Sodium Atom Deposition and Heating. Phys. Solid State 62, 1317–1324 (2020). https://doi.org/10.1134/S1063783420080119

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420080119

Keywords:

Navigation