Skip to main content
Log in

Visualization of flow structure in a vortex furnace

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

The spatial structure of a swirling flow in a model vortex furnace with distributed input of fuel-air-mixture jets has been studied. The results of experimental and numerical investigations of a three-dimensional (3D) field of time-averaged velocities in an isothermal laboratory model of a vortex furnace have been used to image the structure of flow. Vortex structures have been identified using λ2 and Q criteria, as well as the concept of “minimum total pressure.” The vortex core of the flow has a V-shaped 3D structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. S. Anufriev, Yu. A. Anikin, A. I. Fil’kov, E.L. Loboda, M. V. Agafontseva, D. P. Kasymov, A. S. Ti-zilov, A. V. Astanin, A. V. Pesterev, and E. V. Evtyushkin, Tech. Phys. Lett. 39(1), 30 (2013).

    Article  ADS  Google Scholar 

  2. I. S. Anufriev, O. V. Sharypov, and E. Yu. Shadrin, Tech. Phys. Lett. 39(5), 466 (2013).

    Article  ADS  Google Scholar 

  3. I. S. Anufriev, E. P. Kopyev, D. V. Krasinsky, V. V. Salomatov, E. Yu. Shadrin, and O. V. Sharypov, Energy Power Eng. 5, 306 (2013).

    Article  Google Scholar 

  4. V. Meledin, Yu. Anikin, G. Bakakin, V. Glavniy, S. Dvoinishnikov, D. Kulikov, I. Naumov, V. Okulov, V. Pavlov, V. Rakhmanov, O. Sadbakov, S. Ilyin, N. Mostovskiy, and I. Pylev, in Turbomachines: Aeroelasticity, Aeroacoustics and Unsteady Aerodynamics, Ed. by V. A. Skibin, V. E. Saren, N. M. Savin, and S. M. Frolov (Torus Press, Moscow, 2006), pp. 446–457.

  5. V. V. Salomatov, D. V. Krasinskii, Yu. A. Anikin, I. S. Anufriev, O. V. Sharypov, and Kh. Enhzhargal, J. Eng. Phys. Thermophys. 85(2), 282 (2012).

    Article  Google Scholar 

  6. B. E. Launder, G. J. Reece, and W. Rodi, J. Fluid Mech. 68(3), 537 (1975).

    Article  ADS  MATH  Google Scholar 

  7. K. Hanjalic and B. Launder, Modelling Turbulence in Engineering and the Environment: Second-Moment Routes to Closure (Cambridge University Press, Cambridge, 2011), pp. 80–83.

    Book  Google Scholar 

  8. R. I. Issa, J. Comput. Phys. 62(1), 40 (1986).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. J. Jeong and F. Hussain, J. Fluid Mech. 285, 69 (1995).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. J. C. R. Hunt, A. A. Wray, and P. Moin, Proceedings of the 1988 Summer Program (Center For Turbulence Research, 1988), p. 193.

    Google Scholar 

  11. Y. Dubief and F. Delcayre, Turbulence 1, 22 (2000).

    MathSciNet  Google Scholar 

  12. C. E. Cala, E. C. Fernandes, M. V. Heitor, and S. I. Shtork, Exp. Fluids 40(2), 267 (2006).

    Article  Google Scholar 

  13. P. Chakraborty, S. Balachandar, and R. J. Adrian, J. Fluid Mech. 535, 189 (2005).

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Anufriev.

Additional information

Original Russian Text © I.S. Anufriev, D.V. Krasinsky, E.Yu. Shadrin, O.V. Sharypov, 2014, published in Pis’ma v Zhurnal Tekhnicheskoi Fiziki, 2014, Vol. 40, No. 19, pp. 104–110.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anufriev, I.S., Krasinsky, D.V., Shadrin, E.Y. et al. Visualization of flow structure in a vortex furnace. Tech. Phys. Lett. 40, 879–882 (2014). https://doi.org/10.1134/S1063785014100022

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785014100022

Keywords

Navigation