Skip to main content
Log in

The Structure and Mechanical Properties of Porous Diatomite Ceramic upon Compression Deformation

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

The mechanical properties of a porous diatomite-based ceramic have been studied. The results of a morphological analysis of the samples under study were used to examine the porous structure of the ceramic (morphology and average pore diameter) and determine the numerical value of the porosity of the samples (35–50%). The static (70–115 GPa) and dynamic (37–50 GPa) elasticity moduli of the samples were experimentally determined. The dependence of the dynamic modulus of the porous diatomite ceramic on porosity was examined: the elasticity moduli were found to decrease with increasing porosity of the material. The decrease in the porosity of the material after its being deformed was also found. It was observed that diatomite threads are formed after the samples were subjected to a compression deformation at a rate not exceeding 8 × 10–4 s–1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. L. Dong, C. Zhang, Y. Chen, L. Cao, J. Li, and L. Luo, Mater. Lett. 171, 108 (2016). https://doi.org/10.1016/j.matlet.2016.02.023

    Article  Google Scholar 

  2. F. Akhtar, P. O. Vasiliev, and L. Bergström, J. Am. Ceram. Soc. 92, 338 (2009). https://doi.org/10.1111/j.1551-2916.2008.02882.x

    Article  Google Scholar 

  3. D. G. Ri, S. Z. Qiu, and W. J. Bin, Adv. Mater. Res. 850851, 1355 (2014). doi 10.4028/www.scientific.net/AMR.850-851

  4. N. van Garderen, F. J. Clemens, M. Mezzomo, C. P. Bergmann, and T. Graule, Appl. Slay Sci. 52, 115 (2011). https://doi.org/10.1016/j.clay.2011.02.008

    Article  Google Scholar 

  5. V. M. Fomin, S. G. Mironov, and K. M. Serdyuk, Tech. Phys. Lett. 35, 117 (2009). https://doi.org/10.1134/S1063785009020060

    Article  ADS  Google Scholar 

  6. A. S. Konashuk, A. A. Sokolov, V. E. Drozd, A. A. Romanov, and E. O. Filatova, Tech. Phys. Lett. 38, 562 (2012). https://doi.org/10.1134/S1063785012060235

    Article  ADS  Google Scholar 

  7. P. S. Vassileva, M. S. Apostolova, A. K. Detcheva, and E. H. Ivanova, Chem. Papers 67, 342 (2013). https://doi.org/10.2478/s11696-012-0272-x

    Article  Google Scholar 

  8. L. Hao, W. Gao, S. Yan, M. Niu, G. Liu, and H. Hao, Mater. Chem. Phys. 235, 121741 (2019). https://doi.org/10.1016/j.matchemphys.2019.121741

    Article  Google Scholar 

  9. H. Cheng, N. Cai, and M. Wang, Solid State Ionics 337, 12 (2019). https://doi.org/10.1016/j.ssi.2019.04.004

    Article  Google Scholar 

  10. K. Li, X. Liu, T. Zheng, D. Jiang, Z. Zhou, C. Liu, X. Zhang, Y. Zhang, and D. Losic, Chem. Eng. J. 370, 136 (2019). https://doi.org/10.1016/j.cej.2019.03.190

    Article  Google Scholar 

  11. M. V. Grigor’ev, N. L. Savchenko, S. P. Buyakova, and S. N. Kul’kov, Tech. Phys. Lett. 43, 723 (2017). https://doi.org/10.1134/S1063785017080089

    Article  ADS  Google Scholar 

  12. A. A. Skvortsov, M. N. Luk’yanov, and Y. V. Novitsan, Solid State Phenom. 269, 71 (2017). doi 10.4028/www.scientific.net/SSP.269.71

  13. G. Bruno, A. M. Efremov, A. N. Levandovskyi, and B. Clausen, J. Mater. Sci. 46, 161 (2011). https://doi.org/10.1007/s10853-010-4899-0

    Article  ADS  Google Scholar 

  14. R. W. Rice, J. Mater. Sci. 40, 983 (2005). https://doi.org/10.1007/s10853-005-6517-0

    Article  ADS  Google Scholar 

  15. Yu. E. Pivinskii and A. G. Romashin, Quartz Ceramics (Metallurgiya, Moscow, 1974) [in Russian].

    Google Scholar 

  16. S. P. Buyakova, V. I. Maslovskii, D. S. Nikitin, and S. N. Kul’kov, Tech. Phys. Lett. 27, 981 (2001). https://doi.org/10.1134/1.1432322

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to S.G. Kalenkov for his interest in the study and stimulating discussions.

Funding

This study was carried out in the framework of project of the Ministry of Education and Science of the Russian Federation no. FZRR-2020-0023/code 0699-2020-0023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Skvortsov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by M. Tagirdzhanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skvortsov, A.A., Luk’yanov, M.N., Chebeneva, I.E. et al. The Structure and Mechanical Properties of Porous Diatomite Ceramic upon Compression Deformation. Tech. Phys. Lett. 47, 166–169 (2021). https://doi.org/10.1134/S1063785021020292

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785021020292

Keywords:

Navigation