Skip to main content
Log in

Energy of interaction in actinomycin-nucleotide complexes

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Complexes of the natural heterocyclic antibiotic actinomycin D (AMD) with its putative carriers: purine and pyrimidine nucleotides, as well as with fragmented DNA and phospholipid liposomes have been studied by high-sensitivity spectrophotometry. The antibiotic is not only adsorbed onto the surface of purine clusters but also is incorporated into them. It is especially readily incorporated into unwound DNA regions. The incorporation is accompanied by a long-wavelength shift of the absorption spectrum. From the magnitude of the shift, the energy of interaction was calculated. In the case of AMD in the complex with caffeine and adenosine, it is 2.4 and 2.7 kcal/mol, and in the complex with guanosine and fragmented DNA it is considerably higher, 3.3 and 3.7 kcal/mol. It is assumed that guanosine, adenosine, caffeine and fragmented DNA may serve as carriers of the antibiotic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AMD:

actinomycin D

References

  1. Egorov, N.S., Silaev, A.B., and Katrukha, G.S., Antibiotiki-polipeptidy (Polypeptide Antibiotics), Moscow: Mosk. Gos. Unit., 1987.

    Google Scholar 

  2. Gauze, G.F. and Dudnik, Yu.V., Protivoopukholevye antibiotiki (Anticancer Antibiotics), Moscow: Meditsina, 1987.

    Google Scholar 

  3. Dawson, R., Elliott, D., Elliott, W., and Jones, K., Farber S.J. // (3rd edition), Oxford: Clarendon, 1986.

    Google Scholar 

  4. Clementz, G.L. and Dailey, J.W., Am. Fam. Physician, 1988, vol. 37, pp. 167–170.

    CAS  PubMed  Google Scholar 

  5. Traganos, F., Karpuscinski, J., and Darzynkiewicz, Z., Cancer Res., 1991, vol. 51, pp. 3682–3688.

    CAS  PubMed  Google Scholar 

  6. Farber, S.J., J. Am. Med. Assoc., 1996, vol. 198, pp. 826–836.

    Article  Google Scholar 

  7. Rill, R.L. and Hecker, K.H., Biochemistry, 1996, vol. 35, pp. 3525–3533.

    Article  CAS  PubMed  Google Scholar 

  8. Jeeninga, R.E., Huthoff, H.T., Gultyaev, A.P., and Berkhout, B., Nucleic Acids Res., 1998, vol. 26, no. 23, pp. 5472–5479.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Koba, M. and Konopa, J., Postepy Hig. Med. Dosw. (Online), 2005, vol. 59, pp. 290–298.

    Google Scholar 

  10. Vekshin, N., Savintsev, I., Kovalev, A., Yelemessov, R., and Wadkins, R., J. Phys. Chem. B, 2001, vol. 105, pp. 8461–8467.

    Article  CAS  Google Scholar 

  11. Savintsev, I.V. and Vekshin, N.L., Mol. Biol., 2002, vol. 36, no. 4, pp. 725–730.

    Article  CAS  Google Scholar 

  12. Savintsev, I.V. and Vekshin, N.L., Appl. Biochem. Microbiol., 2004, vol. 40, no. 4, pp. 421–428.

    Article  CAS  Google Scholar 

  13. Vekshin, N.L., Nanotekhnol. Okhr. Zdorov., 2011, vol. 3, no. 2, pp. 7–12.

    Google Scholar 

  14. Vekshin, N.L., RF Patent No. 2372073, 2009.

    Google Scholar 

  15. Vekshin, N.L. and Savintsev, I.V., Biophysics, 2009, vol. 54, no. 6, pp. 1037–1041.

    CAS  Google Scholar 

  16. Vekshin, N.L. and Kovalev, A.E., J. Biochem., 2006, vol. 140, pp. 185–191.

    Article  CAS  PubMed  Google Scholar 

  17. Origlia-Luster, M.L., Patterson, B.A., and Woolley, E.M., J. Chem. Thermodyn., 2002, vol. 34, pp. 1909–1921.

    Article  CAS  Google Scholar 

  18. Davies, D.B., Veselkov, D.A., Djimant, L.N., and Veselkov, A.N., Eur. Biophys. J., 2001, vol. 30, pp. 354–366.

    Article  CAS  PubMed  Google Scholar 

  19. Vekshin, N.L., Photonics of Biopolymers, Berlin: Springer-Verlag, 2002.

    Book  Google Scholar 

  20. Vekshin, N.L., Fluorestsentnaya spektroskopiya biopolimerov (Fluorescence Spectroscopy of Biopolymers), Pushchino: Foton-vek, 2006.

    Google Scholar 

  21. Bitekhtina, M.A. and Vekshin, N.L., Russ. J. Bioorg. Chem., 2008, vol. 34, no. 2, pp. 234–238.

    Article  CAS  Google Scholar 

  22. Vekshin, N.L., Biofizika DNK-aktinomitsinovykh kompleksov (Biophysics of DNA-Actinomycin Complexes), Pushchino: Foton-vek, 2009.

    Google Scholar 

  23. Wadkins, R.M., Vladu, B., and Tunng, C., Biochemistry, 1998, vol. 37, pp. 11915–11923.

    Article  CAS  PubMed  Google Scholar 

  24. Wadkins, R.M., Tunng, C., Vallone, P.M., and Benight, A.S., Arch. Biochem. Biophys., 2000, vol. 384, pp. 199–203.

    Article  CAS  PubMed  Google Scholar 

  25. Chen, F.-M., Sha, F., Chin, K.-H., and Chou, S.-H., Biophys. J., 2003, vol. 84, pp. 432–439.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Vekshin, N.L., J. Biochem., 2011, vol. 149, no. 5, pp. 601–607.

    Article  CAS  PubMed  Google Scholar 

  27. Bittman, R. and Blau, L., Biochemistry, 1975, vol. 14, pp. 2138–2145.

    Article  CAS  PubMed  Google Scholar 

  28. Fox, K.R. and Waring, M.J., Eur. J. Biochem., 1984, vol. 145, pp. 579–586.

    Article  CAS  PubMed  Google Scholar 

  29. Brown, C. and Shafer, R., Biochemistry, 1987, vol. 26, pp. 277–282.

    Article  CAS  PubMed  Google Scholar 

  30. Breslauer, K.J., Methods Enzymol., 1995, vol. 259, pp. 221–242.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. L. Vekshin.

Additional information

Original Russian Text © M.M. Khairetdinova, N.L. Vekshin, 2014, published in Bioorganicheskaya Khimiya, 2014, Vol. 40, No. 1, pp. 64–69.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khairetdinova, M.M., Vekshin, N.L. Energy of interaction in actinomycin-nucleotide complexes. Russ J Bioorg Chem 40, 56–60 (2014). https://doi.org/10.1134/S1068162014010063

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162014010063

Keywords

Navigation