Skip to main content
Log in

New Sterically Hindered Bis-o-Benzoquinones with Electron-Donor Bridging Groups and Related Binuclear Triphenylantimony(V) Catecholate Complexes

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

New bis-o-benzoquinones (3,5-Q)-6-CH2O–(CH2)n–OCH2-6-(3,5-Q) (n = 2 (L1), 4 (L2), and 6 (L3)) and (3,5-Q)-6-(CH2OCH2)3-6-(3,5-Q) (L4) (3,5-Q is 3,5-di-tert-butyl-o-benzoquinone) with various diol spacers have been synthesized and characterized. The oxidative addition of SbPh3 to these bis-o-benzoquinones affords binuclear triphenylantimony(V) bis(catecholate) complexes Ph3Sb(3,5-Cat)-6-CH2O–(CH2)n–OCH2-6-(3,5-Cat)SbPh3 (IIII, respectively) and Ph3Sb(3,5-Cat)-6-(CH2OCH2)3-6-(3,5-Cat)SbPh3 (IV) (3,5-Cat is 3,5-di-tert-butyl catecholate). The molecular structures of quinones L1–L4 and bis(catecholate) complex I in the crystalline state were determined by X-ray diffraction analysis (CIF files CCDC nos. 1998601 (L1), 1998602 (L2), 1998603 (L3), 1998604 (L4), and 1998605 (In-pentane)).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Levason, W. and Reid, G., Comprehensive Coordination Chemistry II, McCleverty, J.A. and Meyer, T.J., Eds., Elsevier, 2003, p. 465.

  2. Jones, C., Coord. Chem. Rev., 2001, vol. 215, p. 151.

    Article  CAS  Google Scholar 

  3. Shiragami, T., Matsumoto, J., Inoue, H., and Yasuda, M., J. Photochem. Photobiol., 2005, vol. 6, p. 227.

    Article  CAS  Google Scholar 

  4. Lo, Y.-H. and Gabbaï, F.P., Organometalics, 2018, vol. 37, no. 15, p. 2500.

    Article  CAS  Google Scholar 

  5. You, D., Yang, H., Sen, S., and Gabbaï, F.P., J. Am. Chem. Soc., 2018, vol. 140, no. 30, p. 9644.

    Article  CAS  PubMed  Google Scholar 

  6. Jones, J.S. and Gabbaï, F.P., Chem.-Eur. J., 2017, vol. 23, no. 5, p. 1136.

    Article  CAS  PubMed  Google Scholar 

  7. Jones, J.S. and Gabbaï, F.P., Acc. Chem. Rev., 2016, vol. 49, p. 857.

    Article  CAS  Google Scholar 

  8. Liu, R.-C., Ma, Y.-Q., Yu, L., et al., Appl. Organomet. Chem., 2003, vol. 17, p. 662.

    Article  CAS  Google Scholar 

  9. You, D., Smith, J.E., Sen, S., and Gabbaï, F.P., Organometallics, 2020. https://doi.org/10.1021/acs.organomet.0c00193

  10. Sen, S., Ke, I.Sh., and Gabbaï, F.P., Organometallics, 2017, vol. 36, no. 21, p. 4224.

    Article  CAS  Google Scholar 

  11. You, D. and Gabbaï, F.P., J. Am. Chem. Soc., 2017, vol. 139, no. 20, p. 6843.

    Article  CAS  PubMed  Google Scholar 

  12. Pan, B. and Gabbaï, F.P., J. Am. Chem. Soc., 2014, vol. 136, no. 27, p. 9564.

    Article  CAS  PubMed  Google Scholar 

  13. Huang, Y., Acc. Chem. Res., 1992, vol. 25, p. 182.

    Article  Google Scholar 

  14. Finet, J.P., Ligand Coupling Reactions with Heteroatomic Compounds, New York: Pergamon, 1998.

    Google Scholar 

  15. Hadjikakou, S.K., Ozturk, I.I., Banti, C.N., et al., J. Inorg. Biochem., 2015, vol. 153, p. 293.

    Article  CAS  PubMed  Google Scholar 

  16. Reglinski, J., The Chemistry of Arsenic, Antimony and Bismuth, Norman, N.C., Ed., London: Blackie, 1998.

    Google Scholar 

  17. Wormser, U. and Nir, I., Chemistry of Organic Arsenic, Antimony and Bismuth Compounds, Patai, S., Ed., New York: Wiley, 1994, p. 715.

    Google Scholar 

  18. Ge, R. and Sun, H., Acc. Chem. Res., 2007, vol. 40, p. 267.

    Article  CAS  PubMed  Google Scholar 

  19. Sharma, P., Perez, D., Cabrera, A., et al., Acta Pharmacol. Sin., 2008, vol. 29, no. 8, p. 881.

    Article  CAS  PubMed  Google Scholar 

  20. Poddel’sky, A.I., Antimony: Characteristics, Compounds and Applications, Razeghi, M., Ed., New York: Nova Science, 2012, p. 271.

    Google Scholar 

  21. Abakumov, G.A., Poddel’sky, A.I., Grunova, E.V., et al., Angew. Chem., Int. Ed. Engl., 2005, vol. 44, p. 2767.

    Article  CAS  Google Scholar 

  22. Cherkasov, V.K., Abakumov, G.A., Grunova, E.V., et al., Chem.-Eur. J., 2006, vol. 12, no. 14, p. 3916.

    Article  CAS  PubMed  Google Scholar 

  23. Poddel’sky, A.I., Smolyaninov, I.V., Kurskii, Yu.A., et al., J. Organomet. Chem., 2010, vol. 695, no. 8, p. 1215.

    Article  CAS  Google Scholar 

  24. Poddel’sky, A.I., Kurskii, Yu.A., Piskunov, A.V., et al., Appl. Organomet. Chem., 2011, vol. 25, no. 3, p. 180.

    Article  CAS  Google Scholar 

  25. Fukin, G.K., Baranov, E.V., Jelsch, C., et al., J. Phys. Chem. A, 2011, vol. 115, no. 29, p. 8271.

    Article  CAS  PubMed  Google Scholar 

  26. Fukin, G.K., Baranov, E.V., Poddel’sky, A.I., et al., Chem. Phys. Chem., 2012, vol. 13, no. 17, p. 3773.

    Article  CAS  PubMed  Google Scholar 

  27. Kumar, A., Yang, M., Kim, M., et al., Organometallics, 2017, vol. 36, no. 24, p. 4901.

    Article  CAS  Google Scholar 

  28. Christianson, A.M. Gabbaï, F.P., et al., Organometallics, 2017, vol. 36, no. 16, p. 3013.

    Article  CAS  Google Scholar 

  29. Christianson, A.M., Rivard, E., and Gabbaï, F.P., Organometallics, 2017, vol. 36, no. 14, p. 2670.

    Article  CAS  Google Scholar 

  30. Hirai, M. and Gabbaï, F.P., Angew. Chem., Int. Ed. Engl., 2015, vol. 54, p. 1205.

    Article  CAS  Google Scholar 

  31. Chen, C.-H. and Gabbaï, F.P., Angew. Chem., Int. Ed. Engl., 2017, vol. 56, p. 1799.

    Article  CAS  Google Scholar 

  32. Wade, C.R., Ke, I.S., and Gabbaï, F.P., Angew. Chem., Int. Ed. Engl., 2012, vol. 51, p. 478.

    Article  CAS  Google Scholar 

  33. Abakumov, G.A., Nevodchikov, V.I., Druzhkov, N.O., et al., Russ. Chem. Bull., 1997, vol. 46, no. 4, p. 771. https://doi.org/10.1007/BF02495211

    Article  CAS  Google Scholar 

  34. Bencini, A., Daul, C.A., Dei, A., et al., Inorg. Chem., 2001, vol. 40, no. 7, p. 1582.

    Article  CAS  PubMed  Google Scholar 

  35. Shultz, D.A., Comment. Inorg. Chem., 2002, vol. 23, p. 1.

    Article  CAS  Google Scholar 

  36. Piskunov, A.V., Cherkasov, V.K., Druzhkov, N.O., et al., Russ. Chem. Bull., 2005, vol. 54, no. 7, p. 1627. https://doi.org/10.1007/s11172-006-0014-8

    Article  CAS  Google Scholar 

  37. Poddel’sky, A.I., Piskunov, A.V., Druzhkov, N.O., et al., Z. Anorg. Allg. Chem., 2009, vol. 635, p. 2563.

    Google Scholar 

  38. Arsenyev, M.V., Astaf’eva, T.V., Baranov, E.V., et al., Mendeleev Commun., 2018, vol. 28, p. 76.

    Article  CAS  Google Scholar 

  39. Kuropatov, V.A., Klementieva, S.V., Poddel’sky, A.I., et al., Russ. Chem. Bull., 2010, vol. 59, p. 1698. https://doi.org/10.1007/s11172-010-0299-5

    Article  CAS  Google Scholar 

  40. Poddel’sky, A.I., Smolyaninov, I.V., Vavilina, N.N., et al., Russ. J. Coord. Chem., 2012, vol. 38, p. 284. https://doi.org/10.1134/S1070328412040094

    Article  CAS  Google Scholar 

  41. Arsen’ev, M.V., Okhlopkova, L.S., Poddel’skii, A.I., et al., Russ. J. Coord. Chem., 2018, vol. 44, p. 162. https://doi.org/10.1134/S1070328418020021

    Article  Google Scholar 

  42. Pierpont, C.G., Coord. Chem. Rev., 2001, vols. 216–217, p. 99.

    Article  Google Scholar 

  43. Pierpont, C.G., Coord. Chem. Rev., 2001, vols. 219–221, p. 415.

    Article  Google Scholar 

  44. Zanello, P. and Corsini, M., Coord. Chem. Rev., 2006, vol. 250, p. 2000.

    Article  CAS  Google Scholar 

  45. Bubnov, M.P., Piskunov, A.V., Zolotukhin, A.A., et al., Russ. J. Coord. Chem., 2020, vol. 46, no. 4, p. 224. https://doi.org/10.1134/S107032842003001X

    Article  CAS  Google Scholar 

  46. Arsenyev, M.V., Baranov, E.V., Shurygina, M.P., et al., Mendeleev Commun., 2016, vol. 26, p. 552.

    Article  CAS  Google Scholar 

  47. Arsenyev, M.V., Baranov, E.V., Fedorov, A.Yu., et al., Mendeleev Commun., 2015, vol. 25, p. 312.

    Article  CAS  Google Scholar 

  48. Gordon, A. and Ford, R., The Chemist’s Companion: A Handbook of Practical Data, Techniques, and References, New York: Wiley, 1972.

    Google Scholar 

  49. Zhiganshina, E.R., Arsenyev, M.V., Shavyrin, A.S., et al., Mendeleev Commun., 2019, vol. 29, p. 91.

    Article  CAS  Google Scholar 

  50. Poddel’sky, A.I., Arsenyev, M.V., Astaf’eva, T.V., et al., J. Organomet. Chem., 2017, vol. 835, p. 17.

    Article  CAS  Google Scholar 

  51. SAINT. Data Reduction and Correction Program, Version 8.38A, Madison: Bruker AXS, 2017.

  52. Sheldrick, G.M., Acta Crystallogr., Sect. A: Found. Adv., 2015, vol. 71, p. 3.

    Article  CAS  Google Scholar 

  53. Sheldrick, G.M., SHELXTL. Version 6.14. Structure Determination Software Suite, Madison: Bruker AXS, 2003.

    Google Scholar 

  54. Sheldrick, G.M., SADABS. Version 2012/1. Bruker/ Siemens Area Detector Absorption Correction Program, Madison: Bruker AXS, 2012.

    Google Scholar 

  55. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., et al., J. Appl. Crystallogr., 2009, vol. 42, p. 339.

    Article  CAS  Google Scholar 

  56. Abakumov, G.A., Cherkasov, V.K., Kocherova, T.N., et al., Russ. Chem. Bull., 2007, vol. 56, p. 1849. https://doi.org/10.1007/s11172-007-0287-6

    Article  CAS  Google Scholar 

  57. Addison, A.W., Rao, T.N., Reedijk, J., et al., J. Chem. Soc., Dalton Trans., 1984, p. 1349.

  58. Brown, S.N., Inorg. Chem., 2012, vol. 51, p. 1251.

    Article  CAS  PubMed  Google Scholar 

  59. Poddel’sky, A.I., Baranov, E.V., Fukin, G.K., et al., J. Organomet. Chem., 2013, vol. 733, p. 44.

    Article  CAS  Google Scholar 

  60. Poddel’sky, A.I., Smolyaninov, I.V., Berberova, N.T., et al., J. Organomet. Chem., 2015, vols. 789–790, p. 8.

    Article  CAS  Google Scholar 

  61. Poddel’sky, A.I., Smolyaninov, I.V., Fukin, G.K., et al., J. Organomet. Chem., 2016, vol. 824, p. 1.

    Article  CAS  Google Scholar 

  62. Poddel’sky, A.I., Astaf’eva, T.V., Smolyaninov, I.V., et al., J. Organomet. Chem., 2018, vol. 873, p. 57.

    Article  CAS  Google Scholar 

  63. Poddel’sky, A.I., Smolyaninov, I.V., Fukin, G.K., et al., J. Organomet. Chem., 2018, vol. 867, p. 238.

    Article  CAS  Google Scholar 

  64. Okhlopkova, L.S., Poddel’sky, A.I., Smolyaninov, I.V., et al., J. Organomet. Chem., 2019, vol. 897, p. 32.

    Article  CAS  Google Scholar 

  65. Okhlopkova, L.S., Smolyaninov, I.V., Baranov, E.V., and Poddel’sky, A.I., Russ. J. Coord. Chem., 2020, vol. 46, p. 466. https://doi.org/10.1134/S1070328420060081

    Article  Google Scholar 

  66. Poddel’skii, A.I., Okhlopkova, L.S., Meshcheryakova, I.N., et al., Russ. J. Coord. Chem., 2019, vol. 45, p. 133. https://doi.org/10.1134/S1070328419010093

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The studies were carried out using the equipment of the Analytical Center for Collective Use at the Razuvaev Institute of Organometallic Chemistry (Russian Academy of Sciences) in terms of the federal target program “Investigation and Developments on Priority Directions of the Scientific Technological Complex of Russia for 2014–2020” (unique project identifier RFMEFI62120X0040).

Funding

The synthesis of bis-o-benzoquinones was supported by the Russian Foundation for Basic Research (project no. 19-33-90263). The synthesis and study of the antimony(V) catecholate complexes were in the accordance with state assignment of the Razuvaev Institute of Organometallic Chemistry (Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Poddel’sky.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Yablonskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bukhvalova, S.Y., Zhiganshina, E.R., Astaf’eva, T.V. et al. New Sterically Hindered Bis-o-Benzoquinones with Electron-Donor Bridging Groups and Related Binuclear Triphenylantimony(V) Catecholate Complexes. Russ J Coord Chem 46, 817–827 (2020). https://doi.org/10.1134/S1070328420120027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328420120027

Keywords:

Navigation