Skip to main content
Log in

Peroxo Complexes of Th(IV) and Zr(IV) Ions Containing Aspartic Acid and Amine Bases as Potential Biological Agents

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Eight new peroxo complexes of the type [MO(O2)(Asp)L] have been synthesized and characterized by conductivity, magnetic moments, UV-Vis, IR, ESI-MS and 1H NMR spectra, TLC, and elemental analyses [M = Th(IV) and Zr(IV), Asp= deprotonated aspartic acid, L = quinoline, isoquinoline, 8-hydroxyquinoline, and 1,10-phenanthroline]. IR spectra indicate that the ligands coordinate to the metal ions via nitrogen of the amino group of aspartic acid and heterocyclic amines, oxygen of the carboxylate group of deprotonated aspartic acid and the peroxo group (O–O). ESI-MS spectral data and magnetic moment values coupled with electronic spectral data suggest an octahedral geometry for all the complexes. The molar conductance values indicate that all the complexes behave as 1 : 2 electrolytes except complexes of 8-hydroxyquinoline that behaves as 1 : 3 electrolytes. Antibacterial activity of the complexes has been tested against four pathogenic bacteria, two Gram-positive Staphylococcus aureus and Bacillus subtilis and two Gram-negative Escherichia coli and Shigella dysenteriae using Kanamycin (K-30) as a standard. The MIC values for complexes hve been measured. Antifungal activity of the complexes has been tested against four pathogenic fungi Aspergillus flavus, Penicillium species, Candida species, and Aspergillus niger using Fluconazole-50 as a standard. The complexes K2[ThO(O2)(Asp)(IQ)] and K2[ZrO(O2)(Asp)(Q)] demonstrate the highest antibacterial activity, and K2[ZrO(O2)(Asp)(1,10-Phen)] exhibits the highest antifungal activity against all the tested pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Salles, L., Piquemal, J.Y., Thouvenot, R., Minot, C., and Bregeault, J.M., J. Mol. Catal. A: Chemical, 1997, vol. 117, nos. 1–3, p. 375. https://doi.org/10.1016/S1381-1169(96)00257-9

    Article  CAS  Google Scholar 

  2. Herrmann, W.A., Correia, J.D.G., Artus, G.R.J., Fischer, R.W., and Romao, C.C., J. Organometal. Chem., 1996, vol. 520, nos. 1–2, p. 139. https://doi.org/10.1016/0022-328X(96)06272-9

  3. Tarafder, M.T.H., Bhattacharjee, P., and Sarkar, A.K., Polyhedron, 1992, vol. 11, no. 7, p. 795. https://doi.org/10.1016/S0277-5387(00)86012-X

  4. Tarafder, M.T.H. and Khan, A.R., Polyhedron, 1991, vol. 10, no. 8, p. 819. https://doi.org/10.1016/S0277-5387(00)86114-8

    Article  CAS  Google Scholar 

  5. Agarwal, D.D., Srivastava, S., and Chadha, P., Polyhedron, 1990, vol. 9, no. 11, p. 1401. https://doi.org/10.1016/S0277-5387(00)84023-1

  6. Kurosawa, H., Achiha, T., Kajimaru, H., and Ikeda, I., Inorg. Chim. Acta, 1991, vol. 190, no. 2, p. 271. https://doi.org/10.1016/S0020-1693(00)80264-9

  7. Djordjevic, C., Vuletic, N., and Puryear, B.C., J. Inorg. Biochem., 1993, vol. 51, nos. 1–2, p. 308. https://doi.org/10.1016/0162-0134(93)85340-E

  8. Shinohara, N., Matsufuji, S., and Okubo, W., Polyhedron, 1991, vol. 10, no. 1, p. 107. https://doi.org/10.1016/S0277-5387(00)83556-1

  9. Fujisawa, K., Katayama, T., Kitajima, N., and Morooka, Y., J. Inorg. Biochem, 1991, vol. 43, nos. 2–3, p. 216. https://doi.org/10.1016/0162-0134(91)84208-Q

  10. Schmidt, H., Anderson, I., Rehder, D. and Peterson, L.A., Chemistry–A Eur. J., 2001, vol. 7, no. 1, p. 251. https://doi.org/10.1002/1521-3765(20010105)7:1<251::AID-CHEM251>3.0.CO;2-9

  11. Kudrat-E-Zahan, Hossain, S., Haque, M.M., Banu, L.A., Matin, M.A., Bitu, .N.A., Habib, A., Ashrafuzzaman, Uddin, N., and Islam, M.S., Biochem. Mol. Biol., 2019, vol. 4, no. 3, p. 35. https://doi.org/10.11648/j.bmb.20190403.11

    Article  Google Scholar 

  12. El-Barasi, N.M., Miloud, M.M., El-ajaily, M.M., Mohapatra, R.K., Sarangi, A.K., Das, D., Mahal, A., Parhi, P.K., Pintilie, L., Barik, S.R., Bitu, M.N.A, Kudrat-E-Zahan, M., Tabassum, Z., Al Resayes, S.I., and Azam, M., J. Saudi Chem. Soc., 2020, https://doi.org/10.1016/j.jscs.2020.04.00

  13. Latif, M.A., Tofaz, T., Chaki, B.M., Tariqul Islam, H.M., Hossain, M.S., and Kudrat-E-Zahan, M., Russ. J. Gen. Chem., 2019, vol. 89, no. 6, p. 1197. https://doi.org/10.1134/S107036321906015X

    Article  CAS  Google Scholar 

  14. Kudrat-E-Zahan, M., Islam, M.S., and Bashar, M.A., Russ. J. Gen. Chem., 2015, vol. 85, no. 3, p. 667. https://doi.org/10.1134/S1070363215030238

    Article  CAS  Google Scholar 

  15. Elachi, K.A., Hossain, M.S., Bitu, M.N.A., Zahid, A.A.S.M., Mohapatra, R.K., Mannan, M.A., Zakaria, C.M., and Kudrat-E-Zahan, M., J. Chem. Biol. Phys. Sci., Sect. A, 2019, vol. 9, no. 4, p. 201. https://doi.org/10.24214/jcbps.A.9.4.20118

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are thankful to the Chairman, Department of Chemistry, University of Rajshahi, Bangladesh for the laboratory facilities. Also, grateful to the Ministry of Science and Technology, Peoples Republic of Bangladesh for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kudrat-E-Zahan.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bitu, N.A., Hossain, S., Islam, N. et al. Peroxo Complexes of Th(IV) and Zr(IV) Ions Containing Aspartic Acid and Amine Bases as Potential Biological Agents. Russ J Gen Chem 90, 1553–1557 (2020). https://doi.org/10.1134/S1070363220080253

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363220080253

Keywords:

Navigation