Skip to main content
Log in

High-Selectivity Pervaporation Membranes for 1-Butanol Removal from Wastewater

  • Sorption and Ion Exchange Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Possibility of using polydecylmethylsiloxane in the pervaporation removal of organic compounds from aqueous media was examined. It was shown for the example of the system with 1 wt % n-butanol in water that this material is characterized by a large separation factor (69), which twice exceeds the separation factor of the commercial membrane polymer polydimethylsiloxane. A composite membrane was produced on the basis of polydecylmethylsiloxane. The selective layer was deposited from a solution of the polymer by the touching method onto an MFFK-1 domestic microfiltration substrate. Pervaporation experiments with the new composite membranes based on polydecylmethylsiloxane were used to determine the optimal separation mode of the water–butanol mixture: delivery rate of the mixture to be separated, 1.2 cm s–1; and separation temperature 40°C. It was shown that, at a selective layer thickness of about 4.5 μm, it is possible to reach a permeability of the PDecMS/ MFFK-1 membrane that is comparable with the permeability for 1-butanol of commercial composite membranes (5.2 mol m–2 h kPa–1). However, the butanol/water selectivity for the PDecMS/MFFK-1 membrane is 3–7 times that of the commercial membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Irdisova, S.F., Ochistka stochnykh vod proizvodstva slozhnykh efirov (Purification of Wastewater Formed in Manufacture of Esters), Ivanovo, 2009.

    Google Scholar 

  2. Srinivasan, K., Palanivelu, K., and Gopalakrishnan, A.N., Chem. Eng. Sci., 2007, vol. 62, no. 11, pp. 2905–2914. https://doi.org/10.1016/j.ces.2007.02.028

    Article  CAS  Google Scholar 

  3. Porutskii, G.V., Biokhimicheskaya ochistka stochnykh vod organicheskikh proizvodstv (Biochemical Purification of Wastewater from Organic Production Shops), Moscow: Khimiya, 1975, pp. 25–38.

    Google Scholar 

  4. Tijmensen, M.J., Faai, A.P., Hamelinck, C.N., and van Hardeveld, M.R., Biomass Bioenergy, 2002, vol. 23, no. 2, pp. 129–152. https://doi.org/10.1016/S0961-9534(02)00037-5

    Article  CAS  Google Scholar 

  5. Oudshoorn, A., van der Wielen, L.A.M., and Straathof, A.J.J., Ind. Eng. Chem. Res., 2009, vol. 48 pp. 7325–7336. https://doi.org/10.1021/ie900537w

    Article  CAS  Google Scholar 

  6. Vane, L.M., J. Chem.Tech. Biotech., 2005, vol. 80, no. 6, pp. 603–629. https://doi.org/10.1002/jctb.1265

    Article  CAS  Google Scholar 

  7. Shao, P. and Huang, R.Y.M., J. Membr. Sci., 2007, vol. 287, no. 2, pp. 162–179. https://doi.org/10.1016/j.memsci.2006.10.043

    Article  CAS  Google Scholar 

  8. Liu, G., Wei, W., and Jin, W., ACS Sustain. Chem. Eng., 2013, vol. 2, no. 4, pp. 546–560. https://doi.org/10.1021/sc400372d

    Article  Google Scholar 

  9. Rozicka, A., Niemistö, J., Keiski, R.L., and Kujawski, W., J. Membr. Sci., 2014, vol. 453 pp. 108–118. https://doi.org/10.1016/j.memsci.2013.10.065

    Article  CAS  Google Scholar 

  10. Fadeev, A.G., Selinskaya, Y.A., Kelley, S.S., Meagher, M.M., Litvinova, E.G., Khotimsky, V.S., and Volkov, V.V., J. Membr. Sci., 2001, vol. 186 pp. 205–217. https://doi.org/10.1016/S0376-7388(00)00683-9

    Article  CAS  Google Scholar 

  11. Claes, S., Vandezande, P., Mullens, S., De Sitter, K., Peeters, R., and Van Bael, M.K., J. Membr. Sci., 2012, vol. 389 pp. 265–271. https://doi.org/10.1016/j.memsci.2011.10.035

    Article  CAS  Google Scholar 

  12. Borisov, I.L., Kujawska, A., Knozowska, K., Volkov, V.V., and Kujawski, W., J. Membr. Sci., 2018, vol. 564 pp. 1–9. https://doi.org/10.1016/j.memsci.2018.07.001

    Article  CAS  Google Scholar 

  13. Golubev, G.S., Borisov, I.L., and Volkov, V.V., Russ. J. Appl. Chem., 2018, vol. 91, no. 8, pp. 1375–1381. https://doi.org/10.1134/S1070427218080177

    Article  CAS  Google Scholar 

  14. Shalygin, M.G., Kozlova, A.A., Netrusov, A.I., and Teplyakov, V.V., Petrol. Chem., 2016, vol. 56, no. 10, pp. 977–986. https://doi.org/10.1134/S0965544116100108

    Article  CAS  Google Scholar 

  15. Teplyakov, V.V., Shalygin, M.G., Kozlova, A.A., Chistyakov, A.V., Tsodikov, M.V., and Netrusov, A.I., Petrol. Chem., 2017, vol. 57, no. 9, pp. 747–762. https://doi.org/10.1134/S0965544117090080

    Article  CAS  Google Scholar 

  16. Teplyakov, V.V., Shalygin, M.G., Kozlova, A.A., and Netrusov, A.I., Petrol. Chem., 2018, vol. 58, no. 11, pp. 949–957. https://doi.org/10.1134/S0965544118110075

    Article  CAS  Google Scholar 

  17. Volkov, A.V., Novitsky, E.G., Borisov, I.L., Vasilevsky, V.P., and Volkov, V.V., Sep. Purif. Technol., 2016, vol. 171 pp. 191–196. https://doi.org/10.1016/j.seppur.2016.07.038

    Article  CAS  Google Scholar 

  18. Volkov, A.V., Volkov, V.V., and Khotimskii, V.S., Polym. Sci., Ser. A, 2009, vol. 51, nos. 11–12, pp. 1367–1382. https://doi.org/10.1134/S0965545X09110212

    Article  Google Scholar 

  19. Grushevenko, E.A., Borisov, I.L., Bakhtin, D.S., Bondarenko, G.N., Levin, I.S., and Volkov, A.V., React. Funct. Polym., 2019, vol. 134 pp. 156–165. https://doi.org/10.1016/j.reactfunctpolym.2018.11.013

    Article  CAS  Google Scholar 

  20. Grushevenko, E.A., Borisov, I.L., Bakhtin, D.S., Legkov, S.A., Bondarenko, G.N., and Volkov, A.V., Petrol. Chem., 2017, vol. 57, no. 4, pp. 334–340. https://doi.org/10.1134/S0965544117040028

    Article  CAS  Google Scholar 

  21. Dibrov, G.A., Novitsky, E.G., Vasilevsky, V.P., and Volkov, V.V., Petrol. Chem., 2014, vol. 54, no. 7, pp. 568–572. https://doi.org/10.1134/S0965544114070056

    Article  CAS  Google Scholar 

  22. Borisov, I.L., Grushevenko, E.A., Podtynnikov, I.A., Bakhtin, D.S., and Bondarenko, G.N., Petrol. Chem., 2018, vol. 58, no. 13, pp. 1113–1122. https://doi.org/10.1134/S0965544118060038

    Article  CAS  Google Scholar 

  23. Borisov, I.L., Golubev, G.S., Vasilevsky, V.P., Volkov, A.V., and Volkov, V.V., J. Membr. Sci., 2017, vol. 523 pp. 291–300. https://doi.org/10.1016/j.memsci.2016.10.009

    Article  CAS  Google Scholar 

  24. Kujawska, A., Knozowska, K., Kujawa, J., and Kujawski, W., Sep. Purif. Technol., 2016, vol. 159 pp. 68–80. https://doi.org/10.1016/j.seppur.2015.12.057

    Article  CAS  Google Scholar 

  25. Golubev, G.S., Borisov, I.L., and Volkov, V.V., Petrol. Chem., 2018, vol. 58, no. 11, pp. 975–982. https://doi.org/10.1134/S0965544118110014

    Article  CAS  Google Scholar 

  26. Qi, R., Zhao, C., Li, J., Wang, Y., and Zhu, S., J. Membr. Sci., 2006, vol. 269 pp. 94–100. https://doi.org/10.1016/j.memsci.2005.06.022

    Article  CAS  Google Scholar 

  27. Qureshi, N. and Blaschek, H.P., Renewable Energy, 2001, vol. 22, no. 4, pp. 557–564. https://doi.org/10.1016/S0960-1481(00)00108-7

    Article  CAS  Google Scholar 

  28. Raghunath, B. and Hwang, S.T., J. Membr. Sci., 1992, vol. 65, nos. 1–2, pp. 147–161. https://doi.org/10.1016/0376-7388(92)87061-2

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Center of Collective Use of Institute of Petrochemical Synthesis, Russian Academy of Sciences, for providing the equipment.

Funding

The study was financially supported by the Russian Science Foundation (project no. 17-79-20296).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Grushevenko.

Additional information

Conflict of Interest

The authors state that they have no conflict of interest to be disclosed in the present communication.

Russian Text © The Author(s), 2019, published in Zhurnal Prikladnoi Khimii, 2019, Vol. 92, No. 11, pp. 1488–1496.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grushevenko, E.A., Podtynnikov, I.A. & Borisov, I.L. High-Selectivity Pervaporation Membranes for 1-Butanol Removal from Wastewater. Russ J Appl Chem 92, 1593–1601 (2019). https://doi.org/10.1134/S1070427219110168

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427219110168

Keywords

Navigation