Skip to main content
Log in

Low Surface Energy Polyurethane Coatings Based on Acrylic Copolymer and Polyisocyanate Modified with an Organosilicon Block Copolymer

  • Macromolecular Compounds and Polymeric Materials
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

A method for production of polyurethane coatings with low surface energy modified with a block copolymer polydimethylsiloxane–polyphenylsilsesquioxane is presented. Surface characteristics of coatings were studied by methods of measuring the contact angle, attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and scanning electron microscopy with X-ray spectral microanalysis, and the values of static contact angles and surface energy were obtained. The effect of pigmentation on wetting and physicomechanical characteristics of low-energy coatings has been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Ganesh, V.A., Raut, H.K., Nair, A.S., and Ramakrishna, S., J. Mater. Chem., 2011, vol. 21, no. 41, pp. 16304–16322. https://doi.org/10.1039/C1JM12523K

    Article  CAS  Google Scholar 

  2. Rabea, A.M., Mohseni, M., Mirabedini, S.M., and Tabatabaei, M.H. , Appl. Surf. Sci., 2012, vol. 258, no. 10, pp. 4391–4396. https://doi.org/10.1016/j.apsusc.2011.12.123

    Article  CAS  Google Scholar 

  3. Lv, D., Fang, N. and Zhang, W., Infrared Phys. Technol., 2020, vol. 108, p. 103351. https://doi.org/10.1016/j.infrared.2020.103351

    Article  CAS  Google Scholar 

  4. Zhang, W., Jiang, S., and Lv, D., Prog. Org. Coat., 2020, vol. 143, p. 105622. https://doi.org/10.1016/j.porgcoat.2020.105622

    Article  CAS  Google Scholar 

  5. Rahman, M.M., Zahir, M.H., Haq, M.B., Madhan Kumar, A., Arafat, M.E., and Rabbani, M.M., Int. J. Polym. Anal. Charact., 2020, vol. 25, no. 5, pp. 385–395. https://doi.org/10.1080/1023666X.2020.1796106

    Article  CAS  Google Scholar 

  6. Voznyakovskii, A.P., Kudoyarova, V.K., Kudoyarov, M.F., and Patrova, M.Y., Phys. Solid State, 2017, vol. 59, no. 8, pp. 1656–1661. https://doi.org/10.1134/S1063783417080327 

    Article  CAS  Google Scholar 

  7. Ramezanzadeh, B., Mohseni, M., Rabea, A.M., and Yarih H., Int. J. Adhes. Adhes., 2011, vol. 31, no. 7, pp. 775–783. https://doi.org/10.1016/j.ijadhadh.2011.07.007

    Article  CAS  Google Scholar 

  8. Yilgör, E. and Yilgör, I., Prog. Polym. Sci., 2014, vol. 39, no. 6, pp. 1165–1195. https://doi.org/10.1016/j.progpolymsci.2013.11.003

    Article  CAS  Google Scholar 

  9. Chattopadhyay, D.K. and Raju, K.V.S.N., Prog. Polym. Sci., 2007, vol. 32, no. 3. pp. 352–418. https://doi.org/10.1016/j.progpolymsci.2006.05.003

    Article  CAS  Google Scholar 

  10. Mashlyakovskii, L.N., Koz’mina, N.S., Egorova, N.A., and Khomko, E.V., Russ. J. Appl. Chem., 2018, vol. 91, no. 4, pp. 629–640. https://doi.org/10.1134/S1070427218040158 

    Article  CAS  Google Scholar 

  11. Beaugendre, A., Degoutin, S., Bellayer, S., Pierlot, C., Duquesne, S., Casetta, M., and Jimenez, M., Prog. Org. Coat., 2017, vol. 110, pp. 210–241. https://doi.org/10.1016/j.porgcoat.2017.03.011

    Article  CAS  Google Scholar 

  12. Verho, T., Bower, C., Andrew, P., Franssila, S., Ikkala, O., and Ras, R.H., Adv. Mater., 2011, vol. 23, no. 5, pp. 673–678. https://doi.org/10.1002/adma.201003129

    Article  CAS  PubMed  Google Scholar 

  13. Ellinas, K., Tserepi, A., and Gogolides, E., Adv. Colloid Interface Sci., 2017, vol. 250, pp. 132–157. https://doi.org/10.1016/j.cis.2017.09.003

    Article  CAS  PubMed  Google Scholar 

  14. Malik, M. and Kaur, R., Adv. Polym. Technol., 2018, vol. 37, no. 1, pp. 24–30. https://doi.org/10.1002/adv.21637

    Article  CAS  Google Scholar 

  15. Vaimakis-Tsogkas, D.T., Bekas, D.G., Giannakopoulou, T., Todorova, N., Paipetis, A.S., and Barkoula, N.M. , Mater. Chem. Phys., 2019, vol. 223, pp. 366–373.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We express our gratitude to FSUE NIISK named after S.V. Lebedev for the product provided and information on the parameters of the silicone polymer SilPol, as well as to the engineering center of St. Petersburg State Technological Institute (Technical University).

Funding

The work was carried out within the framework of a comprehensive project for the creation of high-tech production of the Ministry of Education and Science of the Russian Federation (contract no. 03.G25.31.0237) and the state assignment of the Ministry of Education and Science of the Russian Federation (project no. 11.5362.2017/8.9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Erofeev.

Ethics declarations

The authors declare that they have no conflicts of interest requiring disclosure in this article.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 5, pp. 646–654, January, 2021 https://doi.org/10.31857/S0044461821050133

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erofeev, D.A., Mashlyakovskii, L.N., Khomko, E.V. et al. Low Surface Energy Polyurethane Coatings Based on Acrylic Copolymer and Polyisocyanate Modified with an Organosilicon Block Copolymer. Russ J Appl Chem 94, 647–655 (2021). https://doi.org/10.1134/S107042722105013X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107042722105013X

Keywords:

Navigation