Skip to main content
Log in

Gold–Telluride Mineralization in Ore of the Pionerskoe Gold–Quartz Deposit (Eastern Sayan, Russia)

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

The Pionerskoe gold–quartz deposit is the first primary gold deposit discovered in the southeastern part of the Eastern Sayan. The orebodies of the Pionerskoe deposit are low-sulfidation pyrite–quartz and carbonate-pyrite–quartz veinlets and veins that occur in crush, mylonitization, and shear zones. Pyrite predominates among the ore minerals; chalcopyrite, pyrrhotite, galena, tellurides, native gold, and single fahlore grains are less common. In the quartz veins occurring in listvenite bodies, in addition to the listed ones, are Ni and Co minerals: cobaltite, alloclasite, gersdorffite, and pentlandite. Among the tellurides, the following minerals have been identified: altaite, petzite, hessite, calaverite, melonite, tellurobismuthite, pilsenite, coloradoite, rucklidgeite, volynskite, tsumoite, and tetradymite. Native gold is associated with tellurides; single grains of low-grade native gold are found in association with galena and sphalerite. Native gold disseminations are present in ores as small veinlets and irregularly shaped grains in quartz and pyrite; they often form intergrowths with telluride minerals. The ores contain three mineral assemblages: quartz–pyrite, quartz–polysulfide, and gold–telluride. Studies have shown that during the formation of these assemblages, the sulfur fugacity decreased and the tellurium fugacity increased. Fluid inclusion study and mineral thermometry made it possible to establish the general temperature range of mineral formation from 285 to 225°С, and the formation of the gold–telluride assemblage, from 225 to 227°C. Sulfur isotope compositions in pyrite and equilibrium fluid have values typical of juvenile sulfur. Oxygen isotope composition studies indicate that magmatic fluids were involved in ore formation. The interaction of the primary fluid with the host rocks containing increased concentrations of gold and, possibly, tellurium, led to additional enrichment in these elements and the formation of a small (in terms of reserves) but rich gold deposit with a wide range of telluride minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

Notes

  1. Beresites–quartz-sericite-ankerite-pyrite, and listvenites—quartz-Fe-Mg-carbonate-fuchsite-pyrite rocks (Vikent’eva et al., 2017).

  2. Not officially approved by IMA-CNMNC (Biagioni et al., 2020).

REFERENCES

  1. Afifi, A.M., Kelly, W.C., and Essene, E.J., Phase relations among tellurides, sulfides, and oxides: I. Thermochemical data and calculated equilibria, Econ. Geol., 1988, vol. 83, pp. 377–394.

    Google Scholar 

  2. Biagioni C., George L., Cook N. et al., The tetrahedrite group: nomenclature and classification, American Mineralogist, 2020, vol. 105, pp. 109–122.

  3. Baker, T. and Lang, J.R., Fluid inclusion characteristics of intrusion-related gold mineralization, 627 tombstone tungsten magmatic belt, Yukon territory, Canada, Mineral. Deposita, 2001, vol. 36, pp. 477–489.

    Google Scholar 

  4. Belichenko, V.G., Boos, R.G., Kolosnitsina, T.N., Lepin, V.S., Solodyankina, V.N., and Snytko, A.V. New age data on the metamorphic series of the Tunka Gol’tsy, Eastern Sayan, Dokl. Akad. Nauk SSSR, 1988, vol. 301, no. 2, pp. 402–405.

    Google Scholar 

  5. Bi, S.J., Li, W., and Li, Z.K., Gold distribution in as-deficient pyrite and telluride mineralogy of the Yangzhaiyu gold deposit, Xiaoqinling district, southern north China craton, Mineral. Deposita, 2011, vol. 46, no. 8, pp. 925–941.

    Google Scholar 

  6. Bodnar, R.J. and Vityk, M.O., Interpretation of microthermometric data for H2O–NaCl fluid inclusions, Fluid Inclusions in Minerals: Methods and Application, De Vivo, B and Frezzotti, M.L., Eds., Siena: Pontignano, 1994, pp. 117–130.

  7. Bortnikov, N.S., Geochemistry and origin of the ore-forming fluids in hydrothermal–magmatic systems in tectonically active zones, Geol. Ore Deposits, 2006, vol. 48, no. 1, pp. 1–23.

    Google Scholar 

  8. Bortnikov, N.S., Gamyanin, G.N., Vikent’eva, O.V., Prokof’ev, V.Yu., Alpatov, V.A., and Bakharev, A.G., Fluid composition and origin in the hydrothermal system of the Nezhdaninsky gold deposit, Sakha (Yakutia), Russia, Geol. Ore Deposits, 2007, vol. 49, no. 2, pp. 87–128.

    Google Scholar 

  9. Bortnikov, N.S., Prokof’ev, V.Yu., and Razdolina, N.V., Origin of the Charmitan gold–quartz deposit (Uzbekistan), Geol. Ore Deposits, 1996, vol. 38, no. 3, pp. 208–226.

    Google Scholar 

  10. Cabri, L.J., Phase relations in the Au–Ag–Te system and their mineralogical significance, Econ. Geol., 1965, vol. 60, pp. 1569–1606.

    Google Scholar 

  11. Cepedal, N.J., Tellurides, selenides and bi-mineral assemblages from the Rio Narcea gold belt, Asturias, Spain: genetic implications in Cu–Au and Au skarns, Mineral. Petrol., 2006, vol. 87, no. 3, pp. 277–304.

    Google Scholar 

  12. Damdinov, B.B., Mineral types of gold deposits and regularities of their localization in southeastern East Sayan, Geol. Ore Deposits, 2019, vol. 61, no. 2, pp. 118–132.

    Google Scholar 

  13. Damdinov, B.B. and Damdinova, L.B., Zun-Ospa gold deposit, eastern Sayan: geology, ore composition, and genesis, Geol. Ore Deposits, 2018, vol. 60, no. 3, pp. 241–264.

    Google Scholar 

  14. Damdinov, B.B., Zhmodik, S.M., Travin, A.V., Yudin, D.S. and Goryachev, N.A., New data on the age of gold mineralization in the southeastern part of Eastern Sayan, Dokl. Earth Sci., 2018, vol. 479, no. 2, pp. 429–432.

    Google Scholar 

  15. Dobretsov, N.L., Zhmodik, S.M., Karmanov, N.S., et al., Mineralogical-geochemical signs of polychromous origin of native gold of the gold deposit of Eastern Sayan, Dokl. Akad. Nauk SSSR, 1989, vol. 308, no. 3, pp. 703–707.

    Google Scholar 

  16. Fedotova, A.A. and Khain, E.V., Tektonika yuga Vostochnogo Sayana i ego polozhenie v Uralo-Mongol’skom poyase (Tectonics of the Southern Eastern Sayan and its Position in the Urals–Mongolian Belt), Moscow: Nauchnyi mir, 2002.

  17. Feofilaktov, G.A., Mineral associations and composition of the gold ore deposits of one of the Eastern Sayan region, Mater. Geol. Polezn. Iskop. Bur. ASSR, 1969, vol. 12, pp. 19–34.

    Google Scholar 

  18. Goldfarb, R.J., Groves, D.I., and Gardoll, S., Orogenic gold and geologic time: a global synthesis, Ore Geol. Rev., 2001, vol. 18, pp. 1–75.

    Google Scholar 

  19. Goldfarb, R.J., Taylor, R.D., Collins, G.S., Goryachev, N.A., and Orlandini, O.F., Phanerozoic continental growth and gold metallogeny of Asia, Gondwana Res., 2014, vol. 25, pp. 48–102.

    Google Scholar 

  20. Gordienko, I.V., Roshchektaev, P.A., and Gorokhovskii, D.V., Oka ore district of the Eastern Sayan: geology, structural–metallogenic zonation, genetic types of ore deposits, their geodynamic formation conditions, and outlook for development, Geol. Ore Deposits, 2016, vol. 58, no. 5, pp. 361–382.

    Google Scholar 

  21. Goryachev, N.A., Noble-metal ore genesis and mantle–crust interaction, Russ. Geol. Geophys., 2014, vol. 55, no. 3, pp. 252–258.

    Google Scholar 

  22. Goryachev, N.A., Vikent’eva, O.V., Bortnikov, N.S., Prokof’ev, V.Yu., Alpatov, V.A., and Golub, V.V., The world-class Natalka gold deposit, Northeast Russia: REE patterns, fluid inclusions, stable oxygen isotopes, and formation conditions of ore, Geol. Ore Deposits, 2008, vol. 50, no. 5, pp. 362–390.

    Google Scholar 

  23. Grebenshchikova, V.I. and Shmotov, A.P., Stages of formation of the Zun-Kholbin gold deposit (Eastern Sayan), Geol. Geofiz., 1997, vol. 38, no. 4, pp. 756–764.

    Google Scholar 

  24. Gromova, E.I., Composition of ores of one gold deposit from Eastern Sayan, Mater. Geol. Rudnykh Mestorozhdenii Zapadnogo Zabaikal’ya (Geology of Ore Deposits of Western Transbaikalia), Irkutsk: Irkutskoe knizhnoe izdatel’stvo, 1960, pp. 79.

  25. Groves, D.I., Goldfarb, R.J., Gebre-Mariam, M., Hagemann, S.G., and Robert, F., Orogenic gold deposits - a proposed classification in the context of their crustal distribution and relationship to other gold deposit types, Ore Geol. Rev., 1998, vol. 13, pp. 7–27.

    Google Scholar 

  26. Groves, D.I., Goldfarb, R.J., Robert, F., and Hart, C.J.R., Gold deposits in metamorphic belts: overview of current understanding, outstanding problems, future research, and exploration significance, Econ. Geol., 2003, vol. 98, pp. 1–29.

    Google Scholar 

  27. Groves, D.I., Santosh, M., Deng, J., Wang, Q., Yang, L., and Zhang, L., A holistic model for the origin of orogenic gold deposits and its implications for exploration, Mineral. Deposita, 2020, vol. 55, pp. 275–292.

    Google Scholar 

  28. Hart, C.J.R., Reduced intrusion-related gold systems, Mineral Deposits of Canada: A Synthesis of Major Deposit Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods, Goodfellow, W.D., Eds., Geol. Ass. Canada, Mineral Deposits Division, Spec Publ., 2007, vol. 5, pp. 95–112.

  29. Hart, C.J.R., Goldfarb, R.J., Lewis, L.L., and Mair, J.L., The northern Cordillera Mid-Cretaceous plutonic province: ilmenite/magnetite-series granitoids and intrusion-related mineralization, Res. Geol., 2004, vol. 54, no. 3, pp. 253–280.

    Google Scholar 

  30. Hart, C.J., Baker, T., and Burke, M., New exploration concepts for country-rock-hosted, intrusion-related gold systems: Tintina gold belt in Yukon, The Tintina Gold Belt: Concepts, Exploration and Discoveries; British Columbia and Yukon Chamber of Mines, Vancouver, BC, 2000, vol. 2, pp. 145–172.

    Google Scholar 

  31. Hoefs, J., Stable Isotope Geochemistry, 6th Ed., Berlin Heidelberg: Springer-Verlag, 2009.

    Google Scholar 

  32. Hu, Z. and Gao, S., Upper crustal abundances of trace elements: a revision and update, Chem. Geol., 2008, vol. 253, pp. 205–221.

    Google Scholar 

  33. Kelley, K.D., Romberger, S.B., Beat, D.W., Pontius, J.A., Snee, L.W., Stein, H.J., and Thompson, T.B., Geochemical and geochronological constraints on the genesis of Au–Te deposits at Cripple Creek, Colorado, Econ. Geol., 1998, vol. 93, pp. 981–1012.

    Google Scholar 

  34. Khain, E.V., Bibikova, E.V., and Kroner, A., The most ancient ophiolite of the central asian fold belt: U-Pb and Pb-Pb zircon ages for the Dunzhugur Complex, Eastern Sayan, Siberia, and geodynamic implications, Earth Planet. Sci. Lett., 2002, vol. 199, pp. 311–325.

    Google Scholar 

  35. Khubanov, V.B., Dolgoborodova, K.D., Damdinov, B.B., Tsygankov, A.A., and Vrublevskaya, T.T., Spatiotemporal relations of gabbroids and granitoids of the Sumsunur Complex within the Kholbin gold cluster (Eastern Sayan), Geodinamicheskaya evolyutsiya litosfery Tsentral’no-Aziatskogo podvizhnogo poyasa (ot okeana k kontinentu): Mater. Soveshchaniya (Proc. Conference Geodynamic Evolution of Lithosphere of the Central-Asian Mobile Belt (from Ocean to Continent)), Irkutsk: Institut zemnoi kory SO RAN, 2019, vol. 17, pp. 281–282.

  36. Korol’kov, A.T., Geodynamic features of metallogenic formation of gold districts, Izv. Sib. Otd. Sekts. Nauk o Zemle Ross. Akad. Esstestv. Nauk. Geol., Poiski, Razvedka Rudn. Mestorozhd., 2007, vol. 31, no. 5, pp. 5–17.

    Google Scholar 

  37. Kotelnikov, A.R., Suk, N.I., Kotelnikova, Z.A., Shchekina, T.I., and Kalinin, G.M., Mineral geotehrmometers for low-temperature assemblages, Vestn. Otd. Nauk Zemle RAS, 2012, vol. 4.

    Google Scholar 

  38. Kouhestani, H., Rashidnejad-Omran, N., Rastad, E., Mohajjel, M., Goldfarb, R.J., and Ghaderi, M., Orogenic gold mineralization at the Chahbagh Deposit, Muteh gold district, Iran, J. Asian Earth Sci., 2014, vol. 91, pp. 89–106.

    Google Scholar 

  39. Kuzmichev, A.B., Tektonicheskaya istoriya Tuvino-Mongol’skogo massiva: rannebaikal’skii, pozdnebaikal’skii i rannekaledonskii etapy (Tectonic History of the Tuva–Mongolian Massif: Early Baikalian and Early Caledonian Stages), Moscow: Probel-2000, 2004.

  40. Kuzmichev, A.B., Neoproterozoic accretion of the Tuva–Mongolian massif, one of the Precambrian terranes in the Central Asian Orogenic Belt, Composition and Evolution of Central Asian Orogenic Belt, Kroner, A., Eds., Stuttgart: Borntraeger Science Publishers, 2015.

    Google Scholar 

  41. Lang, J.R., Baker, T., Hart, C.J.R., and Mortensen, J.K., An exploration model for intrusion-related gold systems, Soc. Econ. Geol. Newslett., 2000, no. 1, pp. 6–15.

  42. Lang, J.R. and Baker, T., Intrusion-related gold systems: the present level of understanding, Mineral. Deposita, 2001, vol. 36, pp. 477–489.

    Google Scholar 

  43. Mironov, A.G. and Zhmodik, S.M., Gold deposits of the Urik–Kitoi metallogenic zone (Eastern Sayan, Russia), Geol. Ore Deposits, 1999, vol. 41, no. 1, pp. 46–60.

    Google Scholar 

  44. Muelle, A.G., Structure, alteration, and geochemistry of the Charlotte quartz vein stockwork, Mt Charlotte gold mine, Kalgoorlie, Australia: time constraints, down-plunge zonation, and fluid source, Mineral. Deposita, 2015, vol. 50, pp. 221–244.

    Google Scholar 

  45. Ohmoto, H. and Rye, R.O., Isotopes of Sulfur and Carbon in Geochemistry of Hydrothermal Ore Deeposits, New York: John Wiley and Sons, 1979.

    Google Scholar 

  46. Ovchinnikova, G.V., Krylov, D.P., Kozakov, I.K., Kovach, V.P., and Sergeeva, N.A., Sources of granitoids in the Tuva-Mongolian microcontinent and surrounding structures: evidence from Pb, Nd, and O isotopic systematics, Petrology, 2009, vol. 17, no. 6, pp. 570–578.

    Google Scholar 

  47. Pals, D.W., Spry, P.G., and Chryssoulis, S., Invisible gold and tellurium in arsenic-rich pyrite from the Emperor gold deposit, Fiji: implications for gold distribution and deposition, Econ. Geol., 2003, vol. 98, pp. 479–493.

    Google Scholar 

  48. Phillips, G.N. and Powell, R., Formation of gold deposits - a metamorphic devolatilization model, J. Metamorph. Geol., 2010, vol. 28, pp. 689–718.

    Google Scholar 

  49. Plotinskaya, O.Y., Kovalenker, V.A., Seltmann, R., and Stanley, C.J., Te and Se mineralogy of the Kochbulak and Kairagach high-sulfidation epithermal gold telluride deposits (Kurama Ridge, middle Tien-Shan, Uzbekistan), Mineral. Petrol., 2006, vol. 87, nos. 3–4, pp. 187–207.

    Google Scholar 

  50. Seal, R.R., Sulfur isotope geochemistry of sulfide minerals, Rev. Mineral. Geochem., 2006, vol. 61, pp. 633–677.

    Google Scholar 

  51. Shackleton, J.M., Spry, P.G., and Bateman, R., Telluride mineralogy of the golden mile deposit, Western Australia, Can. Mineral., 2003, vol. 41, pp. 1503–1524.

    Google Scholar 

  52. Sharp, Z.D., Gibbons, J.A., Maltsev, O., Atudorei, V., Pack, A., Sengupta, S., Shock, E.L., and Knauth, L.P., A calibration of the triple oxygen isotope fractionation in the sio2-h2o system and applications to natural samples, Geochim. Cosmochim. Acta, 2016, vol. 186, pp. 105–119.

    Google Scholar 

  53. Spence-Jones, C.P., Jenkin, G.R.T., Boyce, A.J., Hill, N.J., and Sangster, C.J.S., Tellurium, magmatic fluids and orogenic gold: an early magmatic fluid pulse at Cononish gold deposit, Scotland, Ore Geol. Rev., 2018, vol. 102, pp. 894–905.

    Google Scholar 

  54. Thompson, J.F.H., Sillitoe, R.H., Baker, T., Lang, J.R., and Mortensen, J.K., Intrusion-related gold deposits associated with tungsten-tin provinces, Mineral Deposita, 1999, vol. 34, pp. 323–334.

    Google Scholar 

  55. Vielreicher, N.M., Groves, D.I., and McNaughton, N.J., The giant Kalgoorlie gold field revisited, Geosci. Front., 2016, vol. 7, pp. 359–374.

    Google Scholar 

  56. Vikent’eva, O.V., Bortnikov, N.S., Vikentyev, I.V., Groznova, E.O., Lyubimtseva, N.G., and Murzin, V.V., The Berezovsk giant intrusion-related gold-quartz deposit, Urals, Russia: evidence for multiple magmatic and metamorphic fluid reservoirs, Ore Geol. Rev., 2017, vol. 91, pp. 837–863.

    Google Scholar 

  57. Vikent’eva, O.V., Prokofiev, V.Yu., Gamyanin, G.N., Goryachev, N.A., and Bortnikov, N.S., Intrusion-related gold-bismuth deposits of North-East Russia: PTx parameters and sources of hydrothermal fluids, Ore Geol. Rev., 2018, pp. 240–259.

  58. Wang, D., Zhen, S., Liu, J., Carranza, E.J.M., Wang, J., and Zha, Z., Li, Y., and Bai, H., Mineral paragenesis and hydrothermal evolution of the Dabaiyang tellurium-gold deposit, Hebei province, China: constraints from fluid inclusions, H–O–He–Ar isotopes, and physicochemical conditions, Ore Geol. Rev., 2020, 130:103904. https://doi.org/10.1016/j.oregeorev.2020.103904

    Article  Google Scholar 

  59. Yi, W., Halliday, A.N., Alt, J., Lee, D.C., Rehkamper, M., Garcia, M.O., and Su, Y.J., Cadmium, indium, tin, tellurium, and sulfur in oceanic basalts: implications for chalcophile element fractionation in the earth, J. Geophys. Res., 2000, vol. 105, pp. 18927–18948.

    Google Scholar 

  60. Zhmodik, S.M., Mironov, A.G., and Zhmodik, A.S., Zolotokontsentriruyushchie sistemy ofiolitovykh poyasov (na primere Sayano-Baikalo-Muiskogo poyasa) (Gold-Concentrating Systems of Ophiolite Belts with Reference to the Sayan–Baikal–Muya Belt), Novosibirsk: Geo, 2008.

    Google Scholar 

  61. Zoloto Buryatii. Strukturno-metallogenicheskoe raionirovanie, geologicheskoe stroenie mestorozhdenii, resursnaya otsenka (Gold of Buryatia. Structural-Metallogenic Zoning, Geological Structure of the Deposits, and Resource Assessment), Roshchektaev, P.A., Mironov, A.G., Doroshkevich, G.I., et al., Ulan-Ude: BNTs SO RAN, 2000, vol. 1.

Download references

ACKNOWLEDGMENTS

The authors express their gratitude to the analysts listed in the Research Methods section, as well as to chief geologist of PJSC Buryatzoloto G.B. Shulyak. The authors are grateful to the anonymous reviewers for their criticism of an early version of the manuscript.

Funding

The research was carried out under the state task of the GIN SB RAS with funding from the Ministry of Science and Higher Education of the Russian Federation (project no. АААА-А21-121011390003-9), with partial financial support from the Russian Foundation for Basic Research (project no. 18-05-00489a).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. D. Izvekova or B. B. Damdinov.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izvekova, A.D., Damdinov, B.B., Damdinova, L.B. et al. Gold–Telluride Mineralization in Ore of the Pionerskoe Gold–Quartz Deposit (Eastern Sayan, Russia). Geol. Ore Deposits 63, 579–598 (2021). https://doi.org/10.1134/S1075701521060027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701521060027

Keywords:

Navigation