Skip to main content
Log in

A New Solid Solution with Garnet Structure: Berzeliite–Schäferite Isomorphic Series from the Fumarole Exhalation of the Tolbachik Volcano, Kamchatka

  • MINERALS AND MINERAL PARAGENESES
  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

An extended isostructural solid solution (isomorphic series) between arsenate and vanadate of the garnet supergroup — berzeliite (NaCa2)Mg2(AsO4)3 and schäferite (NaCa2)Mg2(VO4)3 — was studied for the first time. The studied material is from sublimates of the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka. These minerals here form aggregates of yellow or orange transparent crystals (up to 1 mm in size). Anhydrite, forsterite, diopside, andradite, hayuin, potassium–sodium feldspars, hematite, magnesioferrite, spinel, barite, aphtitalite-like sulfates, minerals of the powellite–scheelite series, ludwigite, calcium chillerite, paraberzeliite, members of the series rhabdoborite–(V)–rhabdoborite–(W)–rhabdoborite–(Mo), apatite–swabite–pliniusite, tilasite–isokite, udinaite–arsenudinaite, and wagnerite–arsenovagnerite associate with the studied minerals. They were formed under the oxidizing conditions at temperatures not lower than 550°С. The composition of the tetrahedrally coordinated components in the schäferite–berzeliite isomorphic series in the Arsenatnaya fumarole continuously varies from (V2.54As0.48P0.04Si0.01) to (As2.77V0.22Si0.03P0.01). The XCa2+ + ZSi4+ = XNa+ + Z5+ heterovalent isomorphism scheme plays a subordinate role. The crystal structures of three samples (space group Ia–3d) with different As : V ratios were studied:      \({{{\text{(C}}{{{\text{a}}}_{{{\text{2}}{\text{.15}}}}}{\text{N}}{{{\text{a}}}_{{{\text{0}}{\text{.85}}}}}{\text{)}}}_{{\Sigma 3}}}{\text{(M}}{{{\text{g}}}_{{{\text{2}}{\text{.0}}}}}{\text{)(}}{{{\text{V}}}_{{{\text{1}}{\text{.95}}}}}{\text{A}}{{{\text{s}}}_{{{\text{0}}{\text{.90}}}}}{\text{S}}{{{\text{i}}}_{{{\text{0}}{\text{.15}}}}}{{{\text{)}}}_{{{{\Sigma 3}}}}}{{{\text{O}}}_{{12}}},\,\,\,a = 12.39737(7)\,\,{\AA},\,\,\,R = 0.0210;\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)\)      \({{{\text{(C}}{{{\text{a}}}_{{{\text{2}}{\text{.00}}}}}{\text{N}}{{{\text{a}}}_{{{\text{1}}{\text{.00}}}}}{\text{)}}}_{{\Sigma 3}}}{\text{(M}}{{{\text{g}}}_{{{\text{2}}{\text{.0}}}}}{\text{)(}}{{{\text{V}}}_{{{\text{1}}{\text{.90}}}}}{\text{A}}{{{\text{s}}}_{{{\text{0}}{\text{.90}}}}}{\text{S}}{{{\text{i}}}_{{{\text{0}}{\text{.20}}}}}{{{\text{)}}}_{{{{\Sigma 3}}}}}{{{\text{O}}}_{{12}}},\,\,\,a = 12.35366(10)\,\,{\AA},\,\,\,R = 0.0181;\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2)\)          \({{{\text{(C}}{{{\text{a}}}_{{{\text{2}}{\text{.05}}}}}{\text{N}}{{{\text{a}}}_{{{\text{0}}{\text{.95}}}}}{\text{)}}}_{{\Sigma 3}}}{\text{(M}}{{{\text{g}}}_{{{\text{2}}{\text{.0}}}}}{\text{)(}}{{{\text{V}}}_{{{\text{2}}{\text{.35}}}}}{\text{A}}{{{\text{s}}}_{{{\text{0}}{\text{.60}}}}}{\text{S}}{{{\text{i}}}_{{{\text{0}}{\text{.05}}}}}{{{\text{)}}}_{{{{\Sigma 3}}}}}{{{\text{O}}}_{{12}}},\,\,\,a = 12.36093(7)\,\,{\AA},\,\,\,R = 0.0251.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(3)\)

The dimorphism of the garnet supergroup and alluodite group arsenates is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Barresi, A.A., Kolitsch, U., Ciriotti, M.E., Ambrino, P., Bracco, R., and Bonacina, E., La miniera di manganese di Varenche (Aosta, Italia nord-occidentale): ardennite, arseniopleite, manganberzeliite, pirofanite, sarkinite, thortveitite, nuovo As–Sc-analogo della metavariscite e altre specie, Micro, 2005, vol. 2, no. 2005, pp. 81–122.

  2. Basso, R., The crystal structure of palenzonaite, a new vanadata garnet from Val Graveglia (Northern Apennines, Italy), Neues Jahrb. Mineral. Monatsh., 1987, no. 3, pp. 136–144.

  3. Blass, G., Graf, H.W., Kolitsch, U., and Sebold, D., Die Neufunde aus der Vulkaneifel (II), Mineralien-Welt, 2009, vol. 2, p. 45.

    Google Scholar 

  4. d’Yvoire, F., Pintard-Screpel, M., and Bretey, E., Polymorphism and cation transport properties in arsenates Na3 M 2(AsO4)3 (M = Al, Cr, Fe, Ga), Solid State Ionics, 1986, vol. 18–19, no. 1, pp. 502–506.

  5. Ercit, T.S., Caryinite revisited, Mineral. Mag., 1993, vol. 57, no. 389, pp. 721–727.

    Article  Google Scholar 

  6. Grew, E.S., Locock, A.J., Mills, S.J., Galuskina, I.O., Galuskin, E.V., and Halenius, U., Nomenclature of the garnet supergroup, Am. Mineral., 2013, vol. 98, no. 4, pp. 785–811.

    Article  Google Scholar 

  7. Hatert, F., A new nomenclature scheme for the alluaudite supergroup, Eur. J. Mineral., 2019, vol. 31, pp. 807–822.

    Article  Google Scholar 

  8. Hawthorne, F.C., Refinement of the crystal structure of berzeliite, Acta Cryst. Section B: Struct. Crystal. Cryst. Chem., 1976, vol. 32, no. 5, pp. 1581–1583.

    Google Scholar 

  9. Holtstam, D., W and V mineralization in Långban-type Fe-Mn deposits: Epigenetic or syngenetic? J. Geol. Soc. Sweden, 2001, vol. 123, no. 1, pp. 29–33.

    Google Scholar 

  10. Iishi, K. and Ikuta, Y., Isomorphous substitutions in vanadate garnets, Neues Jahrb. Mineral.-Abh., 2006, vol. 182, no. 2, pp. 157–163.

    Google Scholar 

  11. Ito, J., Synthesis of the berzeliite (Ca2NaMg2As3O12)— manganese berzeliite (Ca2NaMn2As3O12) series (arsenate garnet), Am. Mineral., 1968, vol. 53, no. 1–2, pp. 316–319.

    Google Scholar 

  12. Khorari, S., Rulmont, A., and Tarte, P., The arsenates NaCa2 \({\text{M}}_{2}^{{2 + }}\)(AsO4)3(M2+ = Mg, Ni, Co): influence of cationic substitutions on the garnet–alluaudite polymorphism, J. Solid State Chem., 1997, vol. 131, no. 2, pp. 290–297.

    Article  Google Scholar 

  13. Khorari, S., Rulmont, A., Cahay, R., and Tarte, P., Structure of the complex arsenates NaCa2 \({\text{M}}_{2}^{{2 + }}\)(AsO4)3 (M2+ = Mg, Ni, Co): first experimental evidence of a garnet–alluaudite reversible polymorphism, J. Solid State Chem., 1995, vol. 118, no. 2, pp. 267–273.

    Article  Google Scholar 

  14. Kolitsch, U., Rieck, B., Brandstatter, F., Schreiber, F., Fabritz, K.H., Blass, G., and Grobner, J., Neufunde aus dem altem Bergbau und den Schlacken von Lavrion (II), Mineralien-Welt, 2014, vol. 2, pp. 82–95.

    Google Scholar 

  15. Koshlyakova, N.N., Zubkova, N.V., Pekov, I.V., Giester, G., Pushcharovsky, D.Yu., Chukanov, N.V., Voudouris, P., Magganas, A., and Katerinopoulos, A., Crystal chemistry of vanadate garnets from old metallurgical slags of Lavrion, Greece, Neues Jahrb. Mineral., Abh., 2017, vol. 194, no. 1, pp. 19–25.

    Google Scholar 

  16. Koshlyakova, N.N., Pekov, I.V., Zubkova, N.V., Agakhanov, A.A., Turchkova, A.G., Sidorov, E.G., and Pushcharovsky, D.Y., Crystal chemistry of arsenate and vanadate garnets from fumarole exhalations of the Tolbachik volcano, Kamchatka, Russia, Magmatism of the Earth and Related Strategic Metal Deposits, 2018, no. 1, pp. 160–162.

  17. Kouass, S., Bouzemi, B., and Boughzala, H., Garnet-type Li2.44Cr2(AsO4)3, Acta Cryst. Section E: Structure Reports Online, 2006, vol. 62, no. 3, pp. 50–51.

    Article  Google Scholar 

  18. Krause, W., Blass, G., and Effenberger, H., Schaferite, a new vanadium garnet from the Bellberg volcano, Eifel, Germany, Neues Jahrb. Mineral. Monatsh., 1999, no. 3, pp. 123–134.

  19. Majzlan, J., Drahota, P., and Filippi, M., Parageneses and crystal chemistry of arsenic minerals, Rev. Mineral. Geochem., 2014, vol. 79, no. 1, pp. 17–184.

    Article  Google Scholar 

  20. Matsubara, S., Manganberzeriite from the Gozaisho mine, Fukushima Prefecture, Japan, J. Miner. Soc. Japan, 1975, vol. 12, pp. 238–252.

    Google Scholar 

  21. Mill, B. and Ronniger, G. Vanadates with garnet structure. In: Fizika I khimiya ferritov (Physics and Chemistry of Ferrites), Moscow: Moscow University Press, 1973, pp. 98-115 (in Russian).

  22. Nagashima, M. and Armbruster, T., Palenzonaite, berzeliite, and manganberzeliite: (As5+, V5+, Si4+)O4 tetrahedra in garnet structures, Mineral. Mag., 2012, vol. 76, no. 5, pp. 1081–1097.

    Article  Google Scholar 

  23. Nakatsuka, A., Ikuta, Y., Yoshiasa, A., and Iishi, K., Vanadate garnet, Ca2NaMg2V3O12, Acta Cryst. Section C: Cryst. Struct. Commun., 2003, vol. 59, no. 12, pp. i133–i135.

    Article  Google Scholar 

  24. Neurgaonkar, R.R. and Hummel, F.A., Substitutions in vanadate garnets, Mater. Res. Bull., 1975, vol. 10, no. 1, pp. 51–55.

    Article  Google Scholar 

  25. Novak, G.A. and Gibbs, G.V., The crystal chemistry of the silicate garnets, Am. Mineral., 1971, vol. 56, nos. 5–6, pp. 791–825.

  26. Ouerfelli, N., Guesmi, A., Mazza, D., Zid, M.F., and Driss, A., Larséniate Na3Fe2(AsO4)3: Étude structural de la forme basse température et simulation des propriétés de conduction des cations alcalins, Acta Cryst. Section C: Cryst. Struct. Commun., 2008, vol. 64, no. 5.

  27. Pekov, I.V., Koshlyakova, N.N., Zubkova, N.V., Lykova, I.S., Britvin, S.N., Yapaskurt, V.O., Agakhanov, A.A., Shchipalkina, N.V., Turchkova, A.G., and Sidorov, E.G., Fumarolic arsenates - a special type of arsenic mineralization, Eur. J. Mineral., 2018, vol. 30, no. 2, pp. 305–322.

    Article  Google Scholar 

  28. Pekov, I.V., Zubkova, N.V., Koshlyakova, N.N., Belakovskiy, D.I., Agakhanov, A.A., Vigasina, M.F., Britvin, S.N., Sidorov, E.G., and Pushcharovsky, D.Yu., Rhabdoborite-(V), rhabdoborite-(Mo) and rhabdoborite-(W): a new group of borate minerals with the general formula Mg12 \(M_{{1{\raise0.5ex\hbox{$\scriptstyle 1$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 3$}}}}^{{6 + }}\)O6[(BO3)6 – x(PO4)xF2 – x] (M = V5+, Mo6+ or W6+ and x < 1), Phys. Chem. Mineral., 2020, vol. 47, no. 10, pap 44.

  29. Pekov, I.V., Agakhanov, A.A., Zubkova, N.V., Koshlyakova, N.V., Shchipalkina, N.V., Sandalov, F.D., Yapaskurt, V.O., Turchkova, A.G., and Sidorov, E.G., Oxidizing-type fumaroles of the Tolbachik Volcano, a mineralogical and geochemical unique, Russ. Geol. Geophys., 2020, vol. 61, nos. 5–6, pp. 675–688.

  30. Piccoli, G.C., Kolitsch, U., Blas, G., and Ciriotti, M.E., Berzeliite di Montaldo di Mondovi, Cuneo: prima segnalazione italiana, Micro, 2007, pp. 49–54.

    Google Scholar 

  31. Schwarz, H. and Schmidt, L., New compounds with garnet structures. I. Arsenates and vanadates, Inorg. Nuclear Chem. Lett., 1967, vol. 3, pp. 199–203.

    Article  Google Scholar 

  32. Schwarz, H. and Schmidt, L., Neue Verbindungen mit Granatstruktur. III. Arsenate des Typs {NaCa2}[M](As3)O12, Zeitschrift fur Anorganische und Allgemeine Chemie, 1971, vol. 382, no. 3, pp. 257–269.

    Article  Google Scholar 

  33. Schwarz, H. and Schmidt, L., Neue Verbindungen mit Granatstruktur. IV. Arsenate des Typs {Na3}[\({\text{M}}_{{\text{2}}}^{{{\text{III}}}}\)](As3)O12, Zeitschrift fur Anorganische und Allgemeine Chemie, 1972, vol. 387, no. 1, pp. 31–42.

    Article  Google Scholar 

  34. Shannon, R.D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Cryst. Section A, 1976, vol. 32, no. 5, pp. 751–767.

    Article  Google Scholar 

  35. Shchipalkina, N.V., Pekov, I.V., Koshlyakova, N.N., Britvin, S.N., Zubkova, N.V., Varlamov, D.A., and Sidorov, E.G., Unusual silicate mineralization in fumarolic sublimates of the Tolbachik volcano, Kamchatka, Russia,—Part 1: neso, cyclo-, ino- and phylosilicates, Eur. J. Mineral., 2020b, vol. 32, no. 1, pp. 101–119.

    Article  Google Scholar 

  36. Shchipalkina, N.V., Pekov, I.V., Koshlyakova, N.N., Britvin, S.N., Zubkova, N.V., Varlamov, D.A., and Sidorov, E.G., Unusual silicate mineralization in fumarolic sublimates of the Tolbachik volcano, Kamchatka, Russia—Part 2: Tectosilicates, Eur. J. Mineral., 2020b, vol. 32, no. 1, pp. 121–136.

    Article  Google Scholar 

  37. Sheldrick, G.M., A short history of SHELX, Acta Cryst. Section A, 2008, vol. 64, no. 1, pp. 112–122.

    Article  Google Scholar 

  38. The Great Tolbachik Fissure Eruption, Fedotov, S.A. and Markhinin, Y.K., Eds., New York: Cambridge University Press, 1983.

    Google Scholar 

  39. Vergasova, L.P. and Filatov, S.K., A study of volcanogenic exhalation mineralization. J. Volcanol. Seismol., 2016, vol. 10, no. 2, pp. 71–85.

    Article  Google Scholar 

  40. Zelenski, M.E., Zubkova, N.V., Pekov, I.V., Boldyreva, M.M., Pushcharovsky, D.Y., and Nekrasov, A.N., Pseudolyonsite, Cu3(VO4)2, a new mineral species from the Tolbachik volcano, Kamchatka Peninsula, Russia, Eur. J. Mineral., 2011, vol. 23, no. 3, pp. 475–481.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to V.O. Yapaskurt for his help in studying minerals by scanning electron microscopy.

Funding

This work was supported by the Russian Science Foundation, grant no. 20-77-00063. The study of a schäferite sample from the First Cone of the NV GTFE was carried out within the framework of topic no. 0136-2019-0010 “Investigations of the Composition and Structure of Mineral Matter by High-Local Methods.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Koshlyakova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Nickolsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koshlyakova, N.N., Pekov, I.V., Zubkova, N.V. et al. A New Solid Solution with Garnet Structure: Berzeliite–Schäferite Isomorphic Series from the Fumarole Exhalation of the Tolbachik Volcano, Kamchatka. Geol. Ore Deposits 63, 857–868 (2021). https://doi.org/10.1134/S1075701521080055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701521080055

Navigation