Skip to main content
Log in

Phase Composition and Luminescent Properties of Yb3+:(GdxY1 – x)3Al5O12 Nanopowders on Isomorphous Substitution of Y3+ Ions by Gd3+ Ions

  • BRIEF MESSAGE
  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

This paper presents the results of studying the effect of the isomorphic substitution of Y3+ ions into Gd3+ ions on the structure and luminescent properties of yttrium-aluminum garnet nanopowders activated with Yb3+ ions obtained by the polymer-salt method. To study the structure of the material, the methods of X-ray phase analysis, as well as luminescent and infrared spectroscopy, were used. It is established that with an increase in the content of the Gd3+ ions in the garnet structure, a monotonic expansion of the unit cell of crystals and an increase in the width of the Yb3+ luminescence band are observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Moszyński, M., Ludziejewski, T., Wolski, D., Klamra, W., and Norlin, L.O., Properties of YAG:Ce scintillator, Nucl. Instrum. Methods Phys. Res., Sect. A, 1994, vol. 345, no. 3, pp. 461–467.

    Google Scholar 

  2. Ikesue, A., Kamata, K., and Yoshida, K., Effect of neodymium concentration on optical characteristics of polycrystalline Nd:YAG laser materials, J. Am. Ceram. Soc., 1996, vol. 79, no. 7, pp. 1921–1926.

    Article  CAS  Google Scholar 

  3. Yoshioka, H., Nakamura, S., Ogawa, T., and Wada, S., Diode-pumped mode-locked Yb:YAG ceramic laser, Opt. Express, 2009, vol. 17, no. 11, pp. 8919–925.

    Article  CAS  Google Scholar 

  4. Xiao, Z., Yu, S., Ruan, S., Kong, L.B., Huang, Q., Huang, Z., Zhou, K., Su, H., Yao, Z., Que, W., Liu, Y., Zhang, T., Wang, J., Liu, P., Shen, D., Allix, M., Zhang, J., and Tang, D., Materials development and potential applications of transparent ceramics: A review, Mater. Sci. Eng. R, 2020, vol. 139, p. 100518.

    Article  Google Scholar 

  5. Chaim, R., Kalina, M., and Shen, J.Z., Transparent yttrium aluminum garnet (YAG) ceramics by spark plasma sintering, J. Eur. Ceram. Soc., 2007, vol. 27, no. 11, pp. 3331–3337.

    Article  CAS  Google Scholar 

  6. Nakamura, S., Yoshioka, H., Matsubara, Yu., Ogawa, T., and Wada, S., Efficient tunable Yb:YAG ceramic laser, Opt. Commun., 2008, vol. 281, no. 17, pp. 4411–4414.

    Article  CAS  Google Scholar 

  7. Sokolov, I.S., Maslennikov, S.Y., Evstropiev, S.K., Mironov, L.Y., Nikonorov, N.V., and Oreshkina, K.V., YAG:Ce3+ phosphor nanopowders and thin textured coatings prepared by polymer-salt method, Opt. Eng., 2019, vol. 58, no. 2, p. 027103.

    Article  CAS  Google Scholar 

  8. Matrosova, A.S., Kuzmenko, N.K., Nikonorov, N.V., Aseev, V.A., Ananyev, V.A., Demidov, V.V., Dukelskii, K.V., and Evstropiev, S.K., Formation of Gd2O3:Nd3+ nanocrystals in silica microcapillary preforms and hollo-core anti-resonant optical fibers, Opt. Fiber Technol., 2021, vol. 65, p. 102547.

    Article  CAS  Google Scholar 

  9. Zhou, B., Wei, Z., Zou, Y., Zhang, Y., Zhong, X., Bourdet, G.L., and Wang, J., High-efficiency diode-pumped femtosecond Yb:YAG ceramic laser, Opt. Lett., 2010, vol. 35, pp. 288–290.

    Article  CAS  Google Scholar 

  10. Keller, U., Recent developments in compact ultra fast lasers, Nature (London, U.K.), 2003, vol. 424, pp. 831–838.

    Article  CAS  Google Scholar 

  11. Feng, Y., Toci, G., Pirri, A., Patrizi, B., Chen, X., Wei, J., Pan, H., Zhang, X., Li, X., Vannini, M., and Li, J., Influences of the Sc3+ content on the microstructure and optical properties of 10 at % Yb:Y3ScxAl5–xO12 laser ceramics, J. Alloys Compd., 2020, vol. 815, p. 152637.

    Article  CAS  Google Scholar 

  12. Luo, D.W., Xu, C.W., Zhang, J., Qin, X.P., Yang, H., Tan, W.D., Cong, Z.H., and Tang, D.Y., Diode pumped and mode-locked Yb:GdYAG ceramic lasers, Laser Phys. Lett., 2011, vol. 8, no. 10, pp. 719–722.

    Article  CAS  Google Scholar 

  13. Bulyga, D.V. and Evstropiev, S.K., Intermediate products of Yb:YAG laser ceramics fabrication: Structural features, morphology, and luminescent properties, Res. Chem. Intermed., 2021, in press.

  14. Kamada, K., Yanagida, T., Pejchal, J., Nikl, M., and Yoshikawa, A., Growth of Ce doped (Gd,Y)3Al5O12 single crystals by micro-pulling-down method and their scintillation properties, Phys. Status Solidi C, 2012, vol. 9.

  15. Tamrakar, R.K., Upadhyay, K., and Bisen, D.P., Variation in luminescence behavior of Yb3+ doped GdAlO3 phosphor with gradual increase in Yb3+ concentration, Infrared Phys. Technol., 2016, vol. 75, pp. 160–167.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Bulyga.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulyga, D.V., Sadovnichy, R.V., Dukelsky, K.V. et al. Phase Composition and Luminescent Properties of Yb3+:(GdxY1 – x)3Al5O12 Nanopowders on Isomorphous Substitution of Y3+ Ions by Gd3+ Ions. Glass Phys Chem 48, 151–154 (2022). https://doi.org/10.1134/S1087659622020031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659622020031

Keywords:

Navigation