Skip to main content
Log in

Synthesis of Chromone Functionalized Chitosan Polymer: Application/Screening of Its Physical Parameters

  • MODIFICATION OF POLYMERS
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

Chitosan is naturally occurring, biodegradable, non-toxic, non-allergenic biopolysaccharide derived from chitin which turns viscous upon dissolution in mildly acidic medium. Artificially changed chitosan consolidating hydroxyl chromone was set up by responding 6-Hydroxy-4-oxo-4H-chromone-3-carb-aldehyde with chitosan; it was found to have high specific and chelating proficiency towards transition metal ion at pH 1–8. Enhanced adsorption capacity and a strong affinity for Cu2+ was observed as compared to Cd2+, Ni2+ and Co2+ at pH 4–6. Chitosan-hydroxyl-chromone was chemically synthesized and characterized by spectroscopic techniques. Potentiometric strategies affirmed the request of selectivity which was free of the physical form of chitosan-hydroxyl-chromone subsidiary. 1H NMR outcomes recommended a level of substitution (DS) extending from 32.72 to 98.21%. Antimicrobial and antioxidant activity of chitosan-hydroxyl-chromone within the series of synthesized compounds was evaluated. To improve the solubility of chitosan in water, we present a synthesis of chitosan-based chromone biopolymers and its applications in metal extractions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. R. Bassi, S. O. Prasher, and B. K. Simpson, J. Environ. Sci. Health, Part A: Toxic/Hazard. Subst. Environ. Eng. 2, 289 (1999).

    Article  Google Scholar 

  2. H. F. Mark, N. M. Bikales, C. G. Overberger, and G. Menges, Chemical Structure of Chitosan,in Encyclopedia of Polymer Science and Engineering (John Wiley and Sons, New York, 1985), Vol. 2.

    Google Scholar 

  3. R. A. A.Muzzarelli and R. Rocchetti, Talanta 21, 1137 (1974).

    Article  CAS  Google Scholar 

  4. R. A. A. Muzzarelli, Chitin, Ability Chelate Ions of Transition Metals by Free Amine Function of Chitosan (Pergamon Press Ltd., New York, 1977), p. 140.

    Google Scholar 

  5. A. Bittel, Angew. Chem. 70, 638 (1958).

    Article  Google Scholar 

  6. J. W. Mclaren, A. P. Mykyuik, S. N. Willie, and S. S. Berman, Anal. Chem. 57, 2097 (1985).

    Article  Google Scholar 

  7. G. Persuad and F. F. Cantwell, Anal. Chem. (Washington, DC, U. S.) 64, 89 (1992).

  8. G. Csanády, P. Narayanan, K. Müller, W. Wegscheider, and G. Knapp, Angew. Makromol. Chem. 170, 159 (1989).

    Article  Google Scholar 

  9. E. P. Garduno Ruiz, L. Rosales Hoz, and A. Carranza Edwards, Bull. Environ. Contam. Toxicol. 97, 490 (2016).

    Article  CAS  Google Scholar 

  10. V. Gurnani, A. Singh, and B. Venkataramani, Anal. Chim. Acta 485, 221 (2003).

    Article  CAS  Google Scholar 

  11. A. Paulson, J. Anal. Chem. 58, 183 (1986).

    Article  CAS  Google Scholar 

  12. K. Z. Perenyl, A. Lasztity, Z. S. Ilorvath, and A. Levai, Talanta 47, 673 (1998).

    Article  Google Scholar 

  13. C. Fulcher, M. A. Crowell, R. Bayliss, K. B. Ilolland, and J. R. Jezorek, Anal. Chim. Acta 129, 29 (1981).

    Article  CAS  Google Scholar 

  14. M. A. Marshall and I. A. Mottola, Anal. Chem. 55, 2089 (1983).

    Article  CAS  Google Scholar 

  15. O. Zaporozhets, N. Petrruniock, O. Bessarabova, and V. Sukhan, Talanta 49, 899 (1999).

    Article  CAS  Google Scholar 

  16. D. Y. Wu, L. X. Xie, C. L. Zhang, C. Y. Duan, Y. G. Zhao and Z. J. Guo, Dalton Trans. 29, 3528 (2006).

    Article  Google Scholar 

  17. A. O. Martins, E. L. da Silva, E. Carasek, N. S. Gonçalves, M. C. M.Laranjeira, and V. T. Favere, Anal. Chim. Acta 521, 157 (2004).

    Article  CAS  Google Scholar 

  18. A. J. Varma, S. V. Deshpande, and J. F. Kennedy, Carbohydr. Polym. 55, 77 (2004).

    Article  CAS  Google Scholar 

  19. A. M. Ghatole, K. R. Lanjewar, and M. K. Gaidhane, World J. Pharm. Res. 3, 4336 (2014).

    Google Scholar 

  20. K. Kurita, T. Sannan, and Y. Iwakura, J. Appl. Polym. Sci. 23, 511 (1979).

    Article  CAS  Google Scholar 

  21. M. Rhazi, J. Desbrieres, A. Tolaimate, M. Rinaudo, P. Vottero, and A. Alagui, Polymer 43, 1267 (2002).

    Article  CAS  Google Scholar 

  22. G. J. Carpeni, J. Chim. Phys. 66, 327 (1969).

    Article  CAS  Google Scholar 

  23. Z. Cao, H. Ge, and S. Lai, Eur. Polym. J. 37, 2141 (2001).

    Article  CAS  Google Scholar 

  24. M. Rhazi, J. Desbrieses, A. Tolaimate, and M. Rinaudo, Eur. Polym. J. 38, 1523 (2002).

    Article  CAS  Google Scholar 

  25. M. K. Gaidhane, A. M. Ghatole, and K. R. Lanjewar, Int. J. Pharm. Pharm. Sci. 5, 421 (2013).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We express our sincere thanks to SAIF, Chandigarh for spectral analysis and also to NRPL Lab. Nagpur for evaluating antimicrobial activity and HOD, Department of Chemistry and Director, Institute of Science, Nagpur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay M. Ghatole.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaidhane, M.K., Ghatole, A.M. & Lanjewar, K.R. Synthesis of Chromone Functionalized Chitosan Polymer: Application/Screening of Its Physical Parameters. Polym. Sci. Ser. B 62, 206–217 (2020). https://doi.org/10.1134/S1560090420030045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090420030045

Navigation