Skip to main content
Log in

Parametric Stability of a Charged Pendulum with an Oscillating Suspension Point

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

We consider a planar pendulum with an oscillating suspension point and with the bob carrying an electric charge \(q\) . The pendulum oscillates above a fixed point with a charge \(Q.\) The dynamics is studied as a system in the small parameter \(\epsilon\) given by the amplitude of the suspension point. The system depends on two other parameters, \(\alpha\) and \(\beta,\) the first related to the frequency of the oscillation of the suspension point and the second being the ratio of charges. We study the parametric stability of the linearly stable equilibria and use the Deprit – Hori method to construct the boundary surfaces of the stability/instability regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Landau, L. D. and Lifshitz, E. M., Course of Theoretical Physics: Vol. 1. Mechanics , 3rd ed., Oxford: Pergamon, 1976.

    Google Scholar 

  2. Markeev, A. P., Linear Hamiltonian Systems and Some Problems of Stability of the Satellite Center of Mass , Izhevsk: R&C Dynamics, Institute of Computer Science, 2009 ( Russian ).

    Google Scholar 

  3. Siegel, C. and Moser, J., Lectures on Celestial Mechanics , Grundlehren Math. Wiss., vol. 187, New York: Springer, 1971.

    Book  Google Scholar 

  4. Morozov, A. D., The Problem of a Pendulum with an Oscillating Point of Suspension, J. Appl. Math. Mech. , 1995, vol. 59, no. 4, pp. 563–570; see also: Prikl. Mat. Mekh. , 1995, vol. 59, no. 4, pp. 590-598.

    Article  MathSciNet  Google Scholar 

  5. Cruz Araujo, G. and Cabral, H. E., Parametric Stability in a \(P+2\) -Body Problem, J. Dynam. Differential Equations , 2018, vol. 30, no. 2, pp. 719–742.

    Article  MathSciNet  Google Scholar 

  6. Neishtadt, A. I. and Sheng, K., Bifurcations of Phase Portraits of Pendulum with Vibrating Suspension Point, Commun. Nonlinear Sci. Numer. Simul. , 2017, vol. 47, pp. 71–80.

    Article  MathSciNet  Google Scholar 

  7. Formalskii, A. M., Stabilization of an Inverted Pendulum with a Fixed or Movable Suspension Point, Dokl. Math. , 2006, vol. 73, no. 1, pp. 152–156.

    Article  Google Scholar 

  8. Bardin, B. S. and Markeev, A. P., The Stability of the Equilibrium of a Pendulum for Vertical Oscillations of the Point of Suspension, J. Appl. Math. Mech. , 1995, vol. 59, no. 6, pp. 879–886; see also: Prikl. Mat. Mekh. , 1995, vol. 59, no. 6, pp. 922-929.

    Article  MathSciNet  Google Scholar 

  9. Cabral, H. E. and Amorim, T. A., Subharmonic Solutions of a Pendulum under Vertical Anharmonic Oscillations of the Point of Suspension, Regul. Chaotic Dyn. , 2017, vol. 22, no. 7, pp. 782–791.

    Article  MathSciNet  Google Scholar 

  10. Madigan, C., Pendulum with a Moving Pivot , Truro, N.S.: Nova Scotia Agricultural College, 2007.

    Google Scholar 

  11. Brandão Dias, L. and Cabral, H. E., Parametric Stability in a Sitnikov-Like Restricted \(P\) -Body Problem, J. Dynam. Differential Equations , 2018, vol. 30, no. 1, pp. 81–92.

    Article  MathSciNet  Google Scholar 

  12. Gel’fand, I. M. and Lidskii, V. B., On the Structure of Stability Regions of Linear Canonical Systems of Differential Equations with Periodic Coefficients, Uspekhi Mat. Nauk , 1955, vol. 10, no. 1, pp. 3–40 ( Russian ).

    MathSciNet  Google Scholar 

  13. Kamel, A. A., Expansion Formulae in Canonical Transformations Depending on a Small Parameter, Celestial Mech. , 1969/70, vol. 1, pp. 190–199.

    Article  MathSciNet  Google Scholar 

  14. Kapitsa, P. L., The Dynamic Stability of a Pendulum for an Oscillating Point of Suspension, Zh. Èksp. Teor. Fiz. , 1951, vol. 21, no. 5, pp. 588–598 ( Russian ).

    MathSciNet  Google Scholar 

  15. Kapitza, P. L., Pendulum with a Vibrating Suspension, Usp. Fiz. Nauk, 1951, vol. 44, pp. 7–20 (Russian). See also: Collected Papers of P. L. Kapitza: Vol. 2, D. ter Haar (Ed.), Oxford: Pergamon, 1965, pp. 726–737.

    Google Scholar 

  16. Kallu, K. D., Nawaz, M. H., Abbas, N., Pruncu, C. I., and Hasnain, C., Dynamic Response of an Inverted Pendulum System in Water under Parametric Excitations for Energy Harvesting: A Conceptual Approach, Energies , 2020, vol. 13, no. 19, Art. 5215, 15 pp.

    Article  Google Scholar 

  17. Kholostova, O. V., Some Problems of the Motion of a Pendulum when There Are Horizontal Vibrations of the Point of Suspension, J. Appl. Math. Mech. , 1995, vol. 59, no. 4, pp. 553–561; see also: Prikl. Mat. Mekh. , 1995, vol. 59, no. 4, pp. 581-589.

    Article  MathSciNet  Google Scholar 

  18. Kholostova, O. V., On the Motions of a Double Pendulum with Vibrating Suspension Point, Mech. Solids , 2009, vol. 44, no. 2, pp. 184–197; see also: Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela , 2009, no. 2, pp. 25-40.

    Article  Google Scholar 

  19. Krein, M. G., Generalization of Certain Investigations of A. M. Liapunov on Linear Differential Equations with Periodic Coefficients, Dokl. Akad. Nauk SSSR (N.S.) , 1950, vol. 73, pp. 445–448 ( Russian ).

    MATH  Google Scholar 

  20. Levi, M., Geometry of Kapitsa’s Potentials, Nonlinearity , 1998, vol. 11, no. 5, pp. 1365–1368.

    Article  MathSciNet  Google Scholar 

  21. Markeev, A. P., On Nonlinear Meissners Equation, Nelin. Dinam. , 2011, vol. 7, no. 3, pp. 531–547 ( Russian ).

    Article  Google Scholar 

  22. Borowiec, M., Litak, G., and Troger, H., Vibrations of a Pendulum with Oscillating Support and Extra Torque, Proc. Appl. Math. Mech. , 2006, vol. 6, no. 1, pp. 291–292.

    Article  Google Scholar 

  23. Dadfar, M. B. and Geer, J. F., Power Series Solution to a Simple Pendulum with Oscillating Support, SIAM J. Appl. Math. , 1987, vol. 47, no. 4, pp. 737–750.

    Article  MathSciNet  Google Scholar 

  24. Neĭshtadt, A. I., Vasiliev, A. A., and Artemyev, A. V., Capture into Resonance and Escape from It in a Forced Nonlinear Pendulum, Regul. Chaotic Dyn. , 2013, vol. 18, no. 6, pp. 686–696.

    Article  MathSciNet  Google Scholar 

  25. Ovseyevich, A. I., The Stability of an Inverted Pendulum When There Are Rapid Random Oscillations of the Suspension Point, J. Appl. Math. Mech. , 2006, vol. 70, no. 5, pp. 761–768; see also: Prikl. Mat. Mekh. , 2006, vol. 70, no. 5, pp. 844-851.

    Article  Google Scholar 

  26. Kholostova, O. V., Stability of Periodic Motions of the Pendulum with a Horizontally Vibrating Suspension Point, Mech. Solids , 1997, vol. 32, no. 4, pp. 29–33; see also: Izv. Akad. Nauk. Mekh. Tverd. Tela , 1997, vol. , no. 4, pp. 35-39.

    MathSciNet  Google Scholar 

  27. Kholostova O. V., On motions of a pendulum with a vibrating suspension point, Teor. Mekh. , 2003, no. 24, pp. 157–167 ( Russian ).

    Google Scholar 

  28. Richards, Ch. J., Smart, T. J., Jones, Ph. H., and Cubero, D., A Microscopic Kapitza Pendulum, Sci. Rep. , 2018, vol. 8, Art. 13107, 10 pp.

    Article  Google Scholar 

  29. Hasnain, S., Shah, U. H., Choi, S.-H., and Hong, K.-S., Dynamics and Vibrational Control of an Underwater Inverted Pendulum, in 16th International Conference on Control, Automation and Systems (ICCAS, Gyeongju, South Korea, 16–19 Oct 2016), pp. 644–649.

  30. Arutyunov, S. S., On Damped Pendulum with Vibrating Suspension Point, Trudy KAI , 1959, no. 45, pp. 93–102 ( Russian ).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank Dieter Schmidt and Adecarlos Carvalho for discussions on our implemention of the algorithm to compute the coefficients of the stability surfaces. The authors thank the referee for the enquiries and suggestions which were very helpful in improving the presentation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gerson Cruz Araujo or Hildeberto E. Cabral.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

MSC2010

37N05, 70H14, 70J40, 70J25

APPENDIX

Coefficients of Equation (6.1) of the Stability/Instability Surfaces

$$\left\{\begin{array}[]{l}\alpha^{(20)}_{1}(\beta)=-\frac{4+13\beta}{8\left(1+2\beta\right)^{2}};\\ \alpha_{2}^{(20)}(\beta)=\frac{-16+8(13+4\sqrt{2})\beta+(-169+232\sqrt{2})\beta^{2}}{128\sqrt{2}\left(1+2\beta\right)^{3}};\\ \alpha^{(20)}_{3}(\beta)=\left(\frac{64\sqrt{2}+48(56+93\sqrt{2})\beta+4(4728+6907\sqrt{2})\beta^{2}+(33072+22037\sqrt{2})\beta^{3})}{4096\left(1+2\beta\right)^{4}}\right);\\ \alpha^{(20)}_{4}(\beta)=\frac{-256+512(91+246\sqrt{2})\beta+96(1105+9584\sqrt{2})\beta^{2}+64(-12028+6681\sqrt{2})\beta^{3}-(2089837+1491552\sqrt{2})\beta^{4}}{196608\sqrt{2}\left(1+2\beta)\right)^{5}};\\ \alpha^{(20)}_{5}(\beta)=-\left(\frac{11264\sqrt{2}-256(36896+43123\sqrt{2})\beta-640(90976+100605\sqrt{2})\beta^{2}-32(2950080+3174643\sqrt{2})\beta^{3}}{18874368\sqrt{2}(1+2\beta)^{6}}\right)\\ \ \ \ \ \ \ \ \ \ \ \ =-\left(\frac{-4(7088704+16704377\sqrt{2})\beta^{4}-(38443616+29551575\sqrt{2})\beta^{5}}{18874368\sqrt{2}(1+2\beta)^{6}}\right).\end{array}\right.$$
(A.1)

Coefficients of Equation (6.2) of the Stability/Instability Surfaces

$$\left\{\begin{array}[]{l}\alpha_{1}^{(20)}(\beta)=\left(\frac{-4+13\beta}{8\left(1-2\beta\right)^{2}}\right),\\ \alpha_{2}^{(20)}(\beta)=\frac{16+8(-13+2\sqrt{2})\beta+(169-232\sqrt{2})\beta^{2}}{128\sqrt{2}\left(2\beta-1\right)^{3}},\\ \alpha_{3}^{(20)}(\beta)=\left(\frac{64\sqrt{2}-48(56+93\sqrt{2})\beta+4(4728+6907\sqrt{2})\beta^{2}-(33072+22037\sqrt{2})\beta^{3}}{4096\sqrt{2}(1-2\beta)^{4}}\right),\\ \alpha_{4}^{(20)}(\beta)=\frac{256+256(347+534\sqrt{2})\beta-96(5399+8832\sqrt{2})\beta^{2}-80(3377+11562\sqrt{2})\beta^{3}+(3339409+2257776\sqrt{2})\beta^{4}}{196608\sqrt{2}(2\beta-1)^{5}},\\ \alpha_{5}^{(20)}(\beta)=-\left(\frac{11264\sqrt{2}+256(97392+124181\sqrt{2})\beta-128(1386456+1671329\sqrt{2})\beta^{2}+32(7124760+391730\sqrt{2})\beta^{3}}{18874368\sqrt{2}(1-2\beta)^{6}}\right)\\ \ \ \ \ \ \ \ \ \ \ \ =-\left(\frac{4(62281968+24034855\sqrt{2})\beta^{4}+(185088288+47906305\sqrt{2})\beta^{5})}{18874368\sqrt{2}(1-2\beta)^{6}}\right);\\ \alpha_{6}^{(20)}(\beta)=\frac{1}{150994944\left(\beta-1\right)^{7}}\left(-9208137\beta^{6}+9386136\beta^{5}+6134672\beta^{4}\right)\\ \ \ \ \ \ \ \ \ \ \ \ +\frac{1}{150994944\left(\beta-1\right)^{7}}\left(24800000\beta^{3}-52645632\beta^{2}+22132736\beta-200704\right).\end{array}\right.$$
(A.2)

Coefficients of Equation (6.3) of the Stability/Instability Surfaces

$$\left\{\begin{array}[]{l}\alpha_{2}^{(20)}(\beta)=-\dfrac{5+11\beta+83\beta^{2}}{12(-1+2\beta)^{3}},\\ \alpha_{2}^{(02)}(\beta)=\dfrac{1-41\beta+103\beta^{2}}{12(-1+2\beta)^{3}},\\ \alpha_{4}^{(20)}(\beta)=\left(\dfrac{763-33526\beta+39957\beta^{2}-279082\beta^{3}+381211\beta^{4}}{3456(-1+2\beta)^{5}}\right),\\ \alpha_{4}^{(02)}(\beta)=-\left(\dfrac{5+12022\beta-63573\beta^{2}+50218\beta^{3}+90725\beta^{4}}{3456(-1+2\beta)^{5}}\right),\\ \alpha_{6}^{(20)}(\beta)=\dfrac{199459\beta^{6}-884361\beta^{5}+2800788\beta^{4}-4124041\beta^{3}+2621868\beta^{2}-59713\beta+289}{4976640\left(\beta-1\right)^{7}},\\ \alpha_{6}^{(02)}(\beta)=\dfrac{1}{4976640\left(\beta-1\right)^{7}}\left(-6980281\beta^{6}+30452649\beta^{5}-51751092\beta^{4}+46431209\beta^{3}\right)\\ \ \ \ \ \ \ \ \ \ \ \ -\dfrac{1}{4976640\left(\beta-1\right)^{7}}\left(23921292\beta^{2}+6715617\beta-1002401\right).\end{array}\right.$$
(A.3)

Coefficients of Equation (6.4) of the Stability/Instability Surfaces

$$\left\{\begin{array}[]{l}\alpha_{1}^{(20)}(\beta)=-\left(\dfrac{27(-108+7\beta)}{8(27-2\beta)^{2}}\right);\\ \alpha_{2}^{(20)}(\beta)=-\dfrac{(-108+23\beta)(-108+(23+8\sqrt{2})\beta)}{128\sqrt{2}(-9+2\beta)^{3}};\\ \alpha_{3}^{(20)}(\beta)=\left(\frac{-24794911296\sqrt{2}+25509168(-408+1333\sqrt{2})\beta-236196(-23544+66739\sqrt{2})\beta^{2}+2187(-503088+1564231\sqrt{2})\beta^{3}}{4096\sqrt{2}(27-2\beta)^{4}(-9+2\beta)^{3}}\right),\\ \alpha_{4}^{(20)}(\beta)=\frac{892616806656+11019960576(173+18\sqrt{2})\beta-17006112(94085+35664\sqrt{2})\beta^{2}+1574640(296705+207702\sqrt{2})\beta^{3}}{65536\sqrt{2}(-27+2\beta)^{5}(-9+2q)^{3}}\\ \alpha_{5}^{(20)}(\beta)=-\left(\frac{31812862989\sqrt{2}-29753893(624+2369\sqrt{2})\beta-1836660(11587+61479\sqrt{2})\beta^{2}+10183(2912+1598\sqrt{2})\beta^{3}}{18874368\sqrt{2}(27-2\beta)^{6}(-9+2\beta)^{3}}\right).\\ \end{array}\right.$$
(A.4)

Coefficients of Equation (6.5) of the Stability/Instability Surfaces

$$\left\{\begin{array}[]{l}\alpha_{2}^{(20)}(\beta)=-\dfrac{9(-3645+189\beta+\beta^{2})}{4(-27+2\beta)^{3}},\\ \alpha_{2}^{(02)}(\beta)=-\dfrac{27(243-27\beta+\beta^{2})}{4(-27+2\beta)^{3}},\\ \alpha_{4}^{(20)}(\beta)=\dfrac{-1216468449+266862114\beta-18510039\beta^{2}+439398\beta^{3}-1513\beta^{4}}{384(-27+2\beta)^{5}},\\ \alpha_{4}^{(02)}(\beta)=\dfrac{7971615-196830\beta+12393\beta^{2}-2970\beta^{3}+151\beta^{4}}{384(-27+2\beta)^{5}},\\ \alpha_{6}^{(20)}(\beta)=\dfrac{1165052056782267-387069098616477\beta+50678424210636\beta^{2}-3305202565221\beta^{3}}{552960\left(-27+2\beta\right)^{7}}\\ \ \ \ \ \ \ \ \ \ \ \ +\dfrac{110868795684\beta^{4}-1737425349\beta^{5}+8893913\beta^{6}}{552960\left(-27+2\beta\right)^{7}},\\ \alpha_{6}^{(02)}(\beta)=\dfrac{-12440502369-1807430841\beta+487272348\beta^{2}-71483553\beta^{3}}{20480\left(-27+2\beta\right)^{7}}\\ \ \ \ \ \ \ \ \ \ \ \ +\dfrac{6497172\beta^{4}-304577\beta^{5}+5349\beta^{6}}{20480(-27+2\beta)^{7}}.\\ \end{array}\right.$$
(A.5)

Coefficients of Equation (6.6) of the Stability/Instability Surfaces

$$\left\{\begin{array}[]{l}\alpha^{(20)}_{1}(\beta)=-\dfrac{2994003(-1328007994668+1332667\beta)}{8(997002999-1000\beta)^{2}},\\ \alpha_{2}^{(20)}(\beta)=\frac{2997(-5290815701706368149290672-7976023992(-1331334333+2663330\sqrt{2})\beta)}{128\sqrt{2}(-997002999+1000\beta)^{3}}\\ \ \ \ \ \ \ \ \ \ \ \ +\frac{20979(-761143428381+3045331048\sqrt{2})\beta^{2})}{128\sqrt{2}(-997002999+1000\beta)^{3}},\\ \alpha^{(20)}_{3}(\beta)=-\left[\frac{-210787366505431236951145553080744\sqrt{2}+159042396802399040(31944000024+39900729638\sqrt{2})\beta}{4096\sqrt{2}(997002999-1000\beta)^{4}}\right]\\ \ \ \ \ \ \ \ \ \ \ \ -\left[\frac{39880119(2556799840719+159683693169545\sqrt{2})\beta^{2}+(5116160640959360+213017068184190912\sqrt{2})\beta^{3})}{4096\sqrt{2}(997002999-1000\beta)^{4}}\right].\\ \end{array}\right.$$
(A.6)

Coefficients of Equation (6.7) of the Stability/Instability Surfaces

$$\left\{\begin{array}[]{l}\alpha_{2}^{(20)}(\beta)=\dfrac{2997(-40562920379748822477895152-23928071976(-3406741071+4004\sqrt{2})\beta}{128\sqrt{2}(-997002999+1000\beta)^{3}}\\ +\dfrac{(-40954777403147+96096000\sqrt{2})\beta^{2}}{128\sqrt{2}(-997002999+1000\beta)^{3}},\\ \alpha_{2}^{(02)}(\beta)=\dfrac{2997(1763605233902122716430224-7976023992(446443443+4004\sqrt{2})\beta}{128\sqrt{2}(-997002999+1000\beta)^{3}}\\ \ \ \ \ \ \ \ \ \ \ \ +\dfrac{(1797350682229+32032000\sqrt{2})\beta^{2}}{128\sqrt{2}(-997002999+1000\beta)^{3}},\\ \alpha_{4}^{(20)}(\beta)=\dfrac{-256+768(-455+1126\sqrt{2})\beta-3168(41+240\sqrt{2})\beta^{2}-48(-28713+36082\sqrt{2})\beta^{3}}{128\sqrt{2}(-997002999+1000\beta)^{3}},\\ \ \ \ \ \ \ \ \ \ \ \ +\dfrac{27(-32515+54704\sqrt{2})\beta^{4}}{128\sqrt{2}(-997002999+1000\beta)^{3}}\\ \alpha_{4}^{(02)}(\beta)=\dfrac{7971615-196830\beta+12393\beta^{2}-2970\beta^{3}+151\beta^{4}}{128\sqrt{2}(-997002999+1000\beta)^{3}}.\\ \end{array}\right.$$
(A.7)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araujo, G.C., Cabral, H.E. Parametric Stability of a Charged Pendulum with an Oscillating Suspension Point. Regul. Chaot. Dyn. 26, 39–60 (2021). https://doi.org/10.1134/S1560354721010032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354721010032

Keywords

Navigation