Skip to main content
Log in

Effects of thermal radiation on the MHD flow past a vertical plate

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

The effects of thermal radiation on the MHD flow over a vertical and porous plate of an optically thin gray, electrically conducting, viscous and incompressible fluid are studied. The differential equations and their boundary conditions, describing the problemunder consideration, are dimensionalized and the numerical solution is obtained. The numerical results for the velocity and temperature profiles are shown for different dimensionless parameters entering the problem under consideration, such as the radiation parameter S, Grashof number G, Prandtl number P, and the magnetic parameter M.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ali, M.M., Chen, T.S., and Armaly, B.F., Natural Convection-Radiation Interaction in Boundary-Layer Flow over Horizontal Surfaces, AIAA J., 1984, vol. 22, no. 12, pp. 1797–1803.

    Article  ADS  MATH  Google Scholar 

  2. Mukhopadhyay, S. and Layek, G.C., Effects of Thermal Radiation and Variable Fluid Viscosity on Free Convective Flow and Heat Transfer past a Porous Stretching Surface, Int. J. Heat Mass Transfer, 2008, vol. 51, nos. 9/10, pp. 2167–2178.

    Article  MATH  Google Scholar 

  3. Raptis, A. and Toki, C.J., Thermal Radiation in the Presence of Free Convective Flow past a Moving Vertical Porous Plate—An Analytical Solution, Int. J. Appl.Mech. Eng., 2009, vol. 14, no. 4, pp. 1115–1126.

    Google Scholar 

  4. Talebizadeh, P., Moghimi, M.A., Kimiaeifar, A., and Ameri, M., Numerical and Analytical Solutions for Natural Convection Flow with Thermal Radiation and Mass Transfer past aMoving Vertical Porous Plate by Dqm and Ham, Int. J. Comput. Meth., 2011, vol. 8, no. 3, pp. 611–631.

    Article  MATH  Google Scholar 

  5. Raptis, A. and Massalas, C.V., Magnetohydrodynamic Flow past a Plate in the Presence of Radiation, Heat Mass Transfer, 1998, vol. 34, nos. 2/3, pp. 107–109.

    Article  ADS  Google Scholar 

  6. Chamkha, A.J., Mujtaba, M., Quadri, A., and Issa, C., Thermal Radiation Effects on MHD Forced Convection Flow Adjacent to a Non-Isothermal Wedge in the Presence of a Heat Source or Sink, Heat Mass Transfer, 2003, vol. 39, no. 4, pp. 305–312.

    Article  ADS  Google Scholar 

  7. Raptis, A., Perdikis, C., and Takhar, H.S., Effect of Thermal Radiation onMHDFlow, Appl.Math. Comput., 2004, vol. 153, no. 3, pp. 645–649.

    MathSciNet  MATH  Google Scholar 

  8. Duwairi, H.M., Viscous and Joule Heating Effects on Forced Convection Flow from Radiate Isothermal Porous Surfaces, Int. J. Num. Meth. Heat Fluid Flow, 2005, vol. 15, nos. 5/6, pp. 429–440.

    Article  Google Scholar 

  9. Ouaf, M.E.M., Exact Solution of Thermal Radiation on MHD Flow over a Stretching Porous Sheet, Appl. Math. Comput., 2005, vol. 170, no. 2, pp. 1117–1125.

    MathSciNet  MATH  Google Scholar 

  10. Pal, D. and Mondal, H., Effects of Soret–Dufour, Chemical Reaction and Thermal Radiation on MHDNon- Darcy Unsteady Mixed Convective Heat and Mass Transfer over a Stretching Sheet, Comm. Nonlin. Sci. Numer. Simul., 2011, vol. 16, no. 4, pp. 1942–1958.

    ADS  Google Scholar 

  11. Shit, G.C. and Haldar, R., Effects of Thermal Radiation on MHDViscous Fluid Flow and Heat Transfer over Nonlinear Shrinking Porous Sheet, Appl. Math. Mech., 2011, vol. 32, no. 6, pp. 677–688.

    Article  MathSciNet  MATH  Google Scholar 

  12. Das, K., Effect of Chemical Reaction and Thermal Radiation on Heat and Mass Transfer Flow of MHD Micropolar Fluid in a Rotating Frame of Reference, Int. J. Heat Mass Transfer, 2011, vol. 54, nos. 15/16, pp. 3505–3513.

    Article  MATH  Google Scholar 

  13. Ahmed, S., Zueco, J., and Lopez-Ochoa, L.M., Numerical Modeling of MHD Convective Heat and Mass Transfer in Presence of First-Order Chemical Reaction and Thermal Radiation, Chem. Eng. Comm., 2014, vol. 201, no. 3, pp. 419–436.

    Article  Google Scholar 

  14. England, W.G. and Emery, A.F., Thermal Radiation Effects on the Laminar Free Convection Boundary Layer of an Absorbing Gas, J. Heat Transfer, 1969, vol. 91, no. 1, pp. 37–44.

    Article  Google Scholar 

  15. Raptis, A. and Perdikis, C., Thermal Radiation of an Optically Thin Gray Gas, Int. J. Appl. Mech. Eng., 2003, vol. 8, pp. 131–134.

    MATH  Google Scholar 

  16. Muthucumaraswamy, R. and Chandrakala, P., Effects of Thermal Radiation on Moving Vertical Plate in the Presence of an Optically Thin Gray Gas, Forsch. Ingen., 2005, vol. 69, no. 4, pp. 205–208.

    Article  Google Scholar 

  17. Raptis, A. and Toki, C.J., Exact Solution to Unsteady Flow over a Moving Plate in the Presence Thermal Radiation, Int. J. Appl. Mech. Eng., 2012, vol. 17, pp. 1357–1365.

    Google Scholar 

  18. Muthucumaraswamy, R. and Janakiraman, B., MHD and Radiation Effects on Moving Isothermal Vertical Plate with VariableMass Diffusion, Th. Appl.Mech., 2006, vol. 33, no. 1, pp. 17–29.

    Article  MATH  Google Scholar 

  19. Rajesh, V., Radiation Effects on MHD Free Convection Flow near a Vertical Plate with Ramped Wall Temperature, Int. J. Appl.Math. Mech., 2010, vol. 6, no. 21, pp. 660–677.

    MATH  Google Scholar 

  20. Rajput, U.S. and Kumar, S., Rotation and Radiation Effects on MHD Flow past an Impulsively Started Vertical Plate with Variable Temperature, Int. J. Math. An., 2011, vol. 5, no. 24, pp. 1155–1163.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Raptis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raptis, A. Effects of thermal radiation on the MHD flow past a vertical plate. J. Engin. Thermophys. 26, 53–59 (2017). https://doi.org/10.1134/S1810232817010064

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232817010064

Navigation