Skip to main content
Log in

Thermophysical Properties of Liquid K–Pb Alloys

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

The thermal conductivity and the enthalpy increment of K–Pb alloys with a Pb content of 50.00 and 66.67 at. % have been measured by the laser flash method and drop calorimetry in the temperature range from the liquidus line to 1073...1273 K. Based on the measurement results, the specific heat capacity and the thermal diffusivity of the melts have been calculated. Approximation equations for the temperature dependences of the studied properties have been obtained, and tables of reference data have been developed. The concentration dependences of the transport and caloric properties of the K–Pb system demonstrate significant deviations from calculations according to the additivity rule and the presence of extrema in the region of the equiatomic composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. Meijer, J.A., Geertsma, W., and van der Lugt, W., Electrical Resistivities of Liquid Alkali-Lead and Alkali-Indium Alloys, J. Phys. F: Metal Phys., 1985, vol. 15, no. 4, pp. 899–910; https://doi.org/10.1088/0305-4608/15/4/014.

    Article  ADS  Google Scholar 

  2. Morachevskii, A.G., Physicochemical, Structural, and Technological Investigation of Liquid Potassium-Lead Alloys, J. Appl. Chem. USSR, 1992, vol. 65, no. 6, pp. 993–1007.

    Google Scholar 

  3. Gantmakher, V.F., Chemical Localization, Physics-Uspekhi, 2002, vol. 45, no. 11, pp. 1165–1174; https:// doi.org/10.1070/PU2002v045n11ABEH001246.

    Article  ADS  Google Scholar 

  4. van der Lugt, W., Polyanions in Liquid Ionic Alloys: A Decade of Research, J. Phys.: Cond. Matter, 1996, vol. 8, no. 34, pp. 6115–6138. https://doi.org/10.1088/0953-8984/8/34/003.

    Article  ADS  Google Scholar 

  5. Saboungi, M., Geertsma, W., and Price, D.L., Ordering in Liquid Alloys, Ann. Rev. Phys. Chem., 1990, vol. 41, no. 1, pp. 207–244; https://doi.org/10.1146/annurev.pc.41.100190.001231.

    Article  ADS  Google Scholar 

  6. Price, D.L. and Saboungi, M.L., Melting in Alkali-Metal–Lead Alloys: KPb and CsPb, Phys. Rev. B, 1991, vol. 44, no. 14, pp. 7289–7296; https://doi.org/10.1103/PhysRevB.44.7289.

    Article  ADS  Google Scholar 

  7. Khairulin, R.A., Stankus, S.V., and Abdullaev, R.N., Volumetric Properties of Liquid K–Pb Alloys, Thermophys. Aeromech., 2015, vol. 22, no. 3, pp. 345–350; https://doi.org/10.1134/S0869864315030099.

    Article  ADS  Google Scholar 

  8. Abdullaev, R.N., Khairulin, R.A., and Stankus, S.V., Interdiffusion in Potassium-Lead Melts in a Wide Range of Concentrations, Thermophys. Aeromech., 2014, vol. 21, no. 3, pp. 347–353; https://doi.org/ 10.1134/S0869864314030081.

    Article  ADS  Google Scholar 

  9. Saboungi, M., Leonard, S.R., and Ellefson, J., Anomalous Behavior of Liquid K–Pb Alloys: Excess Stability, Entropy, and Heat Capacity, J. Chem. Phys., 1986, vol. 85, no. 10, pp. 6072–6081; https://doi.org/ 10.1063/1.451524.

    Article  ADS  Google Scholar 

  10. Saar, J. and Ruppersberg, H., Specific Heat of Liquid K/Pb Alloys Calculated from (\(\partial \)p/\(\partial \)T)s and \(\varrho \)(T) Data, Zeitschrift für Physikalische Chemie, 1988, vol. 156, no. 2, pp. 587–591; https://doi.org/10.1524/ zpch.1988.156.Part_2.587.

    Article  Google Scholar 

  11. Johnson, G.K. and Saboungi, M., Heat Capacity of Liquid Equiatomic Potassium–Lead Alloy: Anomalous Temperature Dependence, J. Chem. Phys., 1987, vol. 86, no. 11, pp. 6376–6380; https://doi.org/ 10.1063/1.452425.

    Article  ADS  Google Scholar 

  12. Agazhanov, A.Sh., Khairulin, A.R., Abdullaev, R.N., and Stankus, S.V., Thermophysical Properties of the Liquid Eutectic K–Pb Alloy, Thermophys. Aeromech., 2020, vol. 27, no. 4, pp. 623–626; https:// doi.org/10.1134/S0869864320040150.

    Article  ADS  Google Scholar 

  13. Agazhanov, A.Sh., Abdullaev, R.N., Samoshkin, D.A., and Stankus, S.V., Thermal Conductivity and Thermal Diffusivity of Li-Pb Eutectic in the Temperature Range of 293–1273 K, Fusion Engin. Design, 2020, vol. 152, no. 111456, pp. 1–5; https://doi.org/10.1016/j.fusengdes.2020.111456.

    Article  Google Scholar 

  14. Stankus, S.V., Savchenko, I.V., and Yatsuk, O.S., A High-Temperature Drop Calorimeter for Studying Substances and Materials in the Solid and Liquid States, Instrum. Exp. Techn., 2017, vol. 60, no. 4, pp. 608–613; https://doi.org/10.1134/S0020441217030265.

    Article  Google Scholar 

  15. Savchenko, I.V., Stankus, S.V., and Agazhanov, A.S., Measurement of the Thermal Conductivity and Diffusivity of Molten Lead in the Interval 601–1000 K, Atomic Energy, 2013, vol. 115, no. 2, pp. 83–87; https://doi.org/10.1007/s10512-013-9753-4.

    Article  Google Scholar 

  16. Agazhanov, A.Sh., Abdullaev, R.N., Samoshkin, D.A., and Stankus, S.V., Thermal Conductivity of Lithium, Sodium and Potassium in the Liquid State, Phys. Chem. Liquids, 2020, vol. 58, no. 6, pp. 760–768, https://doi.org/10.1080/00319104.2019.1636377.

    Article  Google Scholar 

  17. Subbotin, V.I., Arnol’dov, M.N., Kozlov, F.A., and Shimkevich, A.L., Liquid-Metal Coolants for Nuclear Power, Atomic Energy, 2002, vol. 92, no. 1, pp. 29–40; https://doi.org/10.1023/A:1015050512710.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sh. Agazhanov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agazhanov, A.S., Khairulin, A.R., Abdullaev, R.N. et al. Thermophysical Properties of Liquid K–Pb Alloys. J. Engin. Thermophys. 30, 365–373 (2021). https://doi.org/10.1134/S1810232821030036

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232821030036

Navigation