Skip to main content
Log in

Distinct Cerebellar Glycosphingolipid Phenotypes in Wistar and Lewis Rats

  • EXPERIMENTAL ARTICLES
  • Published:
Neurochemical Journal Aims and scope Submit manuscript

Abstract

Three strains of laboratory rats (Lewis, Wistar and Sprague–Dawley) commonly used for the study of movement disorders differ in gait traits. Sialic acid containing glycosphingolipids, called gangliosides, are abundant in the nervous system, where they affect numerous neurochemical events. Cerebellum plays the key role in the integration of body movements. This study investigated glycosphingolipid phenotypes with the hypothesis that they differ in cerebella of the three rat strains. In addition, forebrain and brain stem glycosphingolipid phenotypes were determined. Total glycosphingolipid fractions (neutral and acidic) were analysed by high performance thin-layer chromatography (HPTLC). Complex gangliosides were detected with HPTLC immunostaining by using cholera toxin B subunit after the neuraminidase pretreatment. The most significant differences were found in the cerebellum glycosphingolipid content. Lewis rats showed three fold higher monohexaosylceramides (galactosylceramide + sulfatide)/gangliosides ratio compared to Wistar rats. On the other hand, the cerebellum of Wistar rats contained an increased content of complex gangliosides GD1b, GT1b and GQ1b, fourfold, twofold and tenfold, respectively, compared to Lewis rats. This study shows that Wistar and Lewis rat strains have pronounced differences in glycosphingolipid content and the composition of cerebellum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Brimberg, L., Flaisher-Grinberg, S., Schilman, E.A., and Joel, D., Behav. Brain. Res., 2007, vol. 179, pp. 141–151.

    Article  Google Scholar 

  2. Koopmans, G.C., Deumens, R., Brook, G., Gerver, J., Honig, W.M., Hamers, F.P., and Joosten, E.A., Physiol. Behav., 2007, vol. 92, pp. 993–1001.

    Article  CAS  Google Scholar 

  3. Clemens, L.E., Jansson, E.K., Portal, E., Riess, O., and Nguyen, H.P., Genes. Brain. Behav., 2014, vol. 13, pp. 305–321.

    Article  CAS  Google Scholar 

  4. Ganguly, A., McEwen, C., Troy, E.L., Colburn, R.W., Caggiano, A.O., Schallert, T.J., and Parry, T.T., J. Neurosci. Methods., 2017, vol. 275, pp. 25–32.

    Article  Google Scholar 

  5. Tang, X., Liu, X., Yang, L., and Sanford, L.D., Behav. Brain. Res., 2005, vol. 160, pp. 60–71.

    Article  Google Scholar 

  6. Webb, A.A., Gowribai, K., and Muir, G.D., Behav. Brain. Res., 2003, vol. 144, pp. 143–156.

    Article  Google Scholar 

  7. Borner, K., Nygren, H., Hagenhoff, B., Malmberg, P., Tallarek, E., and Mansson, J.E., Biochim. Biophys. Acta., 2006, vol. 1761, pp. 335–344.

    Article  Google Scholar 

  8. Dawson, G., Biochim. Biophys. Acta., 2015, vol. 1851, pp. 1026–1039.

    Article  CAS  Google Scholar 

  9. Li, Q., Bozek, K., Xu, C., Guo, Y., Sun, J., Pääbo, S., Sherwood, C.C., Hof, P.R., Ely, J.J., Li, Y., Willmitzer, L., Giavalisco, P., and Khaitovich, P., Mol. Biol. Evol., 2017, vol. 34, pp. 1155–1166.

    Article  CAS  Google Scholar 

  10. Varki, A., FASEB. J., 1997, vol. 11, pp. 248–255.

    Article  CAS  Google Scholar 

  11. Pernber, Z., Richter, K., Mansson, J.E., and Nygren, H., Biochim. Biophys. Acta., 2007, vol. 1771, pp. 202–209.

    Article  CAS  Google Scholar 

  12. Hakomori, S.I., Biochim. Biophys. Acta., 2008, vol. 1780, pp. 325–346.

    Article  CAS  Google Scholar 

  13. Fujimoto, I., Bruses, J.L., and Rutishauser, U., J. Biol. Chem., 2001, vol. 276, pp. 31745–31751.

    Article  CAS  Google Scholar 

  14. Galuska, C.E., Lutteke, T., and Galuska, S.P., Biology (Basel), 2017, vol. 6.

  15. Rutishauser, U., Nat. Rev. Neurosci., 2008, vol. 9, pp. 26–35.

    Article  CAS  Google Scholar 

  16. Molander, M., Berthold, C.H., Persson, H., and Fredman, P. J., Neurosci. Res., 2000, vol. 60, pp. 531–542.

    Article  CAS  Google Scholar 

  17. Seyfried, T.N., and Yu, R.K., J. Neurosci. Res., 1990, vol. 26, pp. 105–111.

    Article  CAS  Google Scholar 

  18. Legros, N., Pohlentz, G., Steil, D., and Muthing, J., Int. J. Med. Microbiol., 2018, vol. 308, pp. 1073–1084.

    Article  CAS  Google Scholar 

  19. Kotani, M., Terashima, T., and Tai, T., Brain. Res., 1995, vol. 700, pp. 40–58.

    Article  CAS  Google Scholar 

  20. Yu, R.K., Nakatani, Y., and Yanagisawa, M. J., Lipid. Res., 2009, vol. 50, pp. S440–S445.

    Article  Google Scholar 

  21. Ledeen, R.W. and Yu, R.K., Methods. Enzymol., 1982, vol. 83, pp. 139–191.

    Article  CAS  Google Scholar 

  22. Distler, U., Souady, J., Hulsewig, M., Drmic-Hofman, I., Haier, J., Friedrich, A.W., Karch, H., Senninger, N., Dreisewerd, K., Berkenkamp, S., Schmidt, M.A., Peter-Katalinić, J., and Müthing, J., PLoS One, 2009, vol. 4, e6813.

    Article  Google Scholar 

  23. Markotic, A. and Marusic, A., Immunol. Invest., 2004, vol. 33, pp. 335–349.

    Article  CAS  Google Scholar 

  24. Markotic, A., Culic, V.C., Kurir, T.T., Meisen, I., Buntemeyer, H., Boraska, V., Zemunik, T., Petri, N., Mesarić, M., Peter-Katalinić, J., and Müthing, J., Biochem. Biophys. Res. Commun., 2005, vol. 330, pp. 131–141.

    Article  CAS  Google Scholar 

  25. Magnani, J.L., Smith, D.F., and Ginsburg, V., Anal. Biochem., 1980, vol. 109, pp. 399–402.

    Article  CAS  Google Scholar 

  26. Betz, J., Bielaszewska, M., Thies, A., Humpf, H.U., Dreisewerd, K., Karch, H., Kim, K.S., Friedrich, A.W., and Müthing, J., J. Lipid. Res., 2011, vol. 52, pp. 618–634.

    Article  CAS  Google Scholar 

  27. Ozgen, H., Baron, W., Hoekstra, D., and Kahya, N., Cell. Mol. Life. Sci., 2016, vol. 73, pp. 3291–3310.

    Article  CAS  Google Scholar 

  28. Hayashi, T., and Su, T.P., Proc. Natl. Acad. Sci. U.S.A., 2004, vol. 101, pp. 14949–14954.

    Article  CAS  Google Scholar 

  29. Hering, H., Lin, C.C., and Sheng, M., J. Neurosci., 2003, vol. 23, pp. 3262–3271.

    Article  CAS  Google Scholar 

  30. Coetzee, T., Fujita, N., Dupree, J., Shi, R., Blight, A., Suzuki, K., Suzuki, K., and Popko, B., Cell, 1996, vol. 86, pp. 209–219.

    Article  CAS  Google Scholar 

  31. Dupree, J.L., Coetzee, T., Blight, A., Suzuki, K., and Popko, B., J. Neurosci., 1998, vol. 18, pp. 1642–1649.

    Article  CAS  Google Scholar 

  32. Dyer, C.A. and Benjamins, J.A., J. Cell. Biol., 1990, vol. 111, pp. 625–633.

    Article  CAS  Google Scholar 

  33. Yu, R.K., Tsai, Y.T., and Ariga, T., Neurochem. Res., 2012, vol. 37, pp. 1230–1244.

    Article  CAS  Google Scholar 

  34. Yu, R.K. and Bieberich, E., Mol. Cell. Endocrinol., 2001, vol. 177, pp. 19–24.

    Article  CAS  Google Scholar 

  35. Scheideler, M.A. and Dawson, G., J. Neurochem., 1986, vol. 46, pp. 1639–1643.

    Article  CAS  Google Scholar 

  36. Guitart, X., Kogan, J.H., Berhow, M., Terwilliger, R.Z., Aghajanian, G.K., and Nestler, E.J., Brain. Res., 1993, vol. 611, pp. 7–17.

    Article  CAS  Google Scholar 

  37. Chen, S. and Hillman, D.E., Brain. Res. Dev. Brain. Res., 1989, vol. 45, pp. 137–147.

    Article  CAS  Google Scholar 

  38. Allen, G. and Courchesne, E., Am. J. Psychiatry, 2003, vol. 160, pp. 262–273.

    Article  Google Scholar 

  39. D’Mello, A.M. and Stoodley, C.J., Front. Neurosci., 2015, vol. 9, p. 408.

    PubMed  PubMed Central  Google Scholar 

  40. Ito, M., The Cerebellum and Neural Control, New York: Raven Press, 1984.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We express our warmest thanks to Dalibora Behmen for English language improvement.

Funding

This study was funded by Ministry of Science, Education and Sports Republic of Croatia, grant no. 216-2160133-0066.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vedrana Čikeš Čulić.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Ethical approval. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted, University of Split School of Medicine.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jasminka Rešić Karara, Kowalski, M., Markotić, A. et al. Distinct Cerebellar Glycosphingolipid Phenotypes in Wistar and Lewis Rats. Neurochem. J. 14, 20–24 (2020). https://doi.org/10.1134/S1819712420010122

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819712420010122

Keywords:

Navigation