Skip to main content
Log in

Hemantane a Derivative of Aminoadamantane Alleviates Morphine-Induced Hyperlocomotion via Modulation of Activity of the Dopaminergic and Serotonergic Systems

  • EXPERIMENTAL ARTICLES
  • Published:
Neurochemical Journal Aims and scope Submit manuscript

Abstract—Morphine is known to induce a long-term hyperlocomotor response due to increased dopamine release in the nucleus accumbens via the activation of dopaminergic neurons in the ventral tegmental area. It has been demonstrated that the low-affinity antagonist of NMDA receptors hemantane can alleviate ethanol-induced stimulation of behavior due to its effect on the dopamine- and noradrenergic systems. In the present study, we studied the effects of the aminoadamantane derivative hemantane on the changes in the balance of monoamines and their metabolites in brain structures of C57Bl/6 mice after acute morphine administration. Single i.p. administration of hemantane at a dose of 20 mg/kg did not affect spontaneous locomotor activity per se but alleviated behavior stimulated by s.c. morphine injection at a dose of 20 mg/kg (p < 0.05). In the ex vivo experiments, hemantane prevented a morphine-induced significant increase in the DOPAC/DA and 5‑HIAA/5-HT ratios in the striatum (both p < 0.05) and HVA/DA in the nucleus accumbens (p < 0.01) and promoted the recovery of the DOPAC/DA ratio to the control level in the hypothalamus. These data demonstrate the capability of hemantane to inhibit morphine-induced behavioral stimulation, probably via modulation of the dopaminergic and serotonergic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Di Chiara, G. and Imperato, A., Proc. Natl. Acad. Sci. U.S.A., 1988, vol. 85, pp. 5274–5278.

    Article  CAS  Google Scholar 

  2. Johnson, S.W. and North, R.A., J. Neurosci., 1992, vol. 12, pp. 483–488.

    Article  CAS  Google Scholar 

  3. Maldonado, R., Saiardi, A., Valverde, O., Samad, T.A., Roques, B.P., and Borrelli, E., Nature, 1997, vol. 388, pp. 586–589.

    Article  CAS  Google Scholar 

  4. Longoni, R., Spina, L., and Di Chiara, G., Psychopharmacology, 1987, vol. 93, pp. 401–402.

    Article  CAS  Google Scholar 

  5. Kalivas, P.W., Widerlow, E., Stanley, D., Breese, G., and Prange, A.J., J. Pharmacol. Exp. Ther., 1983, vol. 227, pp. 229–237.

    CAS  PubMed  Google Scholar 

  6. Serrano, A., Aguilar, M.A., Manzanedo, C., Rodriguez-Arias, M., and Minarro, J., Prog. Neuropsychopharmacol. Biol. Psychiatry, 2002, vol. 26, pp. 1263–1271.

    Article  CAS  Google Scholar 

  7. Becker, A., Grecksch, G., Kraus, J., Peters, B., Schroeder, H., Schulz, S., and Hollt, V., Naunyn Schmiedebergs Arch. Pharmacol., 2001, vol. 363, pp. 562–568.

    Article  CAS  Google Scholar 

  8. Borgkvist, A., Usiello, A., Greengard, P., and Fisone, G., Neuropsychopharmacology, 2007, vol. 32, no. 9, pp. 1995–2003.

    Article  CAS  Google Scholar 

  9. Urs, N.M., Daigle, T.L., and Caron, M.G., Neuropsychopharmacology, 2011, vol. 36, no. 3, pp. 551–558.

    Article  CAS  Google Scholar 

  10. Carroll, B.J. and Sharp, P.T., Br. J. Pharmacol., 1972, vol. 46 P, pp. 124–139.

  11. Kitanaka, N., Kitanaka, J., and Takemura, M., Neurochem. Res., 2006, vol. 31, pp. 829–837.

    Article  CAS  Google Scholar 

  12. Liu, X.S., Hou, Y., Yan, T.L., Guo, Y.Y., Han, W., Guan, F.L., Chen, T., and Li, T., CNS Neurosci. Ther., 2014, vol. 20, no. 9, pp. 823–829.

    Article  CAS  Google Scholar 

  13. Katunina, E.A., Petrukhova, A.V., Avakyan, G.N., Val’dman, E.A., Nerobkova, L.N., Voronina, T.A., and Sayadyan, Kh.S., Zhurn. Nevrol. Psikhiatr.im.S.S. Korsakova, 2008, vol. 108, no. 6, pp. 24–27.

    CAS  Google Scholar 

  14. Nepoklonov, A.V., Kapitsa, I.G., Ivanova, E.A., Voronina, T.A., and Val’dman, E.A., Eksperim. Klin. Farmakol., 2012, vol. 75, no. 11, pp. 3–6.

    CAS  Google Scholar 

  15. Kolik, L.G., Nadorova, A.V., and Seredenin, S.B., Bull. Experim. Biol. Med., 2017, vol. 164, no. 2, pp. 152–157.

    Article  CAS  Google Scholar 

  16. Kolik, L.G. and Konstantinopol’skii, M.A., Bull. Experim. Biol. Med., 2019, vol. 166, no. 6, pp. 739–743.

    Article  CAS  Google Scholar 

  17. Val’dman, E.A., Voronina, T.A., Aksenova, L.N., Buneeva, O.A., and Medvedev, A.E., Eksperim. Klin. Farmakol., 2003, vol. 66, no. 5, pp. 3–5.

    Google Scholar 

  18. Abaimov, D.A., Zimin, I.A., and Kovalev, G.I., Eksperim. Klin. Farmakol., 2008, vol. 71, no. 1, pp. 18–21.

    CAS  Google Scholar 

  19. Abaimov, D.A., Zimin, I.A., Kudrin, V.S., and Kovalev, G.I., Eksperim. Klin. Farmakol., 2009, vol. 72, no. 1, pp. 64–67.

    CAS  Google Scholar 

  20. Elshanskaya, M.V., Sobolevskii, A.I., Khodorov, B.I., and Val’dman, E.A., Eksperim. Klin. Farmakol., 2001, vol. 64, no. 1, pp. 18–21.

    CAS  Google Scholar 

  21. Mori, T., Ito, S., Narita, M., Suzuki, T., and Sawaguchi, T., J. Pharmacol. Sci., 2004, vol. 96, pp. 450–458.

    Article  CAS  Google Scholar 

  22. Kudrin, V.S., Nadorova, A.V., Narkevich, V.B., and Kolik, L.G., Neurochem. J., 2018, vol. 12, no. 1, pp. 64–70.

    Article  CAS  Google Scholar 

  23. Melon, L.C. and Boehm, S.L., Alcohol Clin. Exp. Res., 2011, vol. 35, no. 7, pp. 1351–1360.

    Article  Google Scholar 

  24. Suzuki, T., Maeda, J., Funada, M., and Misawa, M., Neurosci. Lett., 1995, vol. 187, no. 1, pp. 45–48.

    Article  CAS  Google Scholar 

  25. Andyarzhanova, E.A., Val’dman, E.A., Kudrin, V.S., Raevskii, K.S., and Voronina, T.A., Eksperim. Klin. Farmakol., 2001, vol. 64, no. 6, pp. 13–16.

    Google Scholar 

  26. Kovalev, G.I., Rodionov, A.P., Petrenko, E.S., and Zolotarev, Yu.A., Eksperim. Klin. Farmakol., 2003, vol. 66, no. 3, pp. 50–52.

    CAS  Google Scholar 

  27. Desole, M.S., Esposito, G., Fresu, L., Migheli, R., Enrico, P., Mura, M.A., De Natale, G., Miele, E., and Miele, M., Brain Res., 1996, vol. 723, pp. 154–161.

    Article  CAS  Google Scholar 

  28. Martin, G., Przewlocki, R., and Siggins, G.R., J. Pharmacol. Exp. Ther., 1999, vol. 288, pp. 30–35.

    CAS  PubMed  Google Scholar 

  29. Guo, M., Xu, N.J., Li, Y.T., Yang, J.Y., Wu, C.F., and Pei, G., Neurosci. Lett., 2005, vol. 381, pp. 12–15.

    Article  CAS  Google Scholar 

  30. Giacchino, J.L. and Henriksen, S.J., Prog. Neuropsychopharmacol. Biol. Psychiatry, 1998, vol. 22, pp. 1157–1178.

    Article  CAS  Google Scholar 

  31. Liu, J., Nickolenko, J., and Sharp, F.R., Proc. Natl. Acad. Sci. U.S.A., 1994, vol. 91, pp. 8537–8541.

    Article  CAS  Google Scholar 

  32. Pulvirenti, L., Swerdlow, N.R., and Koob, G.F., Pharmacol. Biochem. Behav., 1991, vol. 40, no. 4, pp. 841–845.

    Article  CAS  Google Scholar 

Download references

Funding

This study was performed according to theme no. 0521-2019-0006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. G. Kolik.

Ethics declarations

Conflict of interest. The authors declare no conflict of interest.

Ethical approval. All experiments with animals were performed in accordance with the protocol approved by the Biomedical Ethical Commission of the Zakusov Research Institute of Pharmacology.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolik, L.G., Nadorova, A.V., Narkevich, V.B. et al. Hemantane a Derivative of Aminoadamantane Alleviates Morphine-Induced Hyperlocomotion via Modulation of Activity of the Dopaminergic and Serotonergic Systems. Neurochem. J. 14, 55–63 (2020). https://doi.org/10.1134/S1819712420010134

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819712420010134

Keywords:

Navigation