Skip to main content
Log in

Galaxy Cluster A 2142: Halo Boundary, “Red Sequence”, Properties of Galaxies Based on SDSS

  • Published:
Astrophysical Bulletin Aims and scope Submit manuscript

Abstract—Here we present results of studying the dynamics of galaxies, properties of early-type galaxies, properties of galaxies with the quenched star formation (QGs) in the A 2142 cluster based on the archival data from the Sloan Digital Sky Survey Data (SDSS DR10). We found the observed halo boundary, the “splashback” radius \({{R}_{{{\text{sp}}}}}\), which is equal to 4.12 Mpc (\({{M}_{r}} < - {{20.}^{{\text{m}}}}3\)) and 4.06 Mpc (\({{M}_{r}} < - {{21.}^{{\text{m}}}}5\)) over the integral distribution of the number of galaxies as a function of the squared distance from the center. We have studied how early-type galaxies are distributed in the center and in the outskirts of the cluster (\({R \mathord{\left/ {\vphantom {R {{{R}_{{200}}}}}} \right. \kern-0em} {{{R}_{{200}}}}}\)< 3, \({{M}_{r}} < - {{20.}^{{\text{m}}}}3\)) and plotted the “red sequence” in the form of \((g - r) = ( - 0.024 \pm 0.001){{M}_{r}} + (0.441 \pm 0.005)\). Among all the cluster galaxies, the galaxies with the quenched star formation (\( - 12\) yr\(^{{ - 1}} < \log sSFR < 10.75\) yr\(^{{ - 1}}\)) make up about one third. We have found that the fraction of QGs beyond the “splashback” radius \({{R}_{{{\text{s}}p}}}\) is the same as in the field at the same \(z\) with coordinates of the center of \({\text{16}}{{{\text{.}}}^{{\text{h}}}}{\text{5,}}\,\,31\)° and a size of 300′. For galaxies with the stellar masses \(\log {{{{M}_{*}}} \mathord{\left/ {\vphantom {{{{M}_{*}}} {{{M}_{ \odot }}}}} \right. \kern-0em} {{{M}_{ \odot }}}} = [10.5;11.0]\) (this is the main mass range of QGs), when entering the cluster, there is a decrease in the radii \({{R}_{{90,r}}}\) by about \(30\% \) when moving towards the center.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. K. N. Abazajian, J. K. Adelman-McCarthy, M. A. Agüeros, et al., Astrophys. J. Suppl. 182 (2), 543 (2009).

    Article  ADS  Google Scholar 

  2. S. Adhikari, N. Dalal, and R. T. Chamberlain, Journal of Cosmology and Astroparticle Physics 2014 (11), 019 (2014).

  3. H. Aihara, C. Allende Prieto, D. An, et al., Astrophys. J. Suppl. 193 (2), 29 (2011).

    Article  ADS  Google Scholar 

  4. S. Barsanti, M. S. Owers, S. Brough, et al., Astrophys. J. 857 (1), 71 (2018).

    Article  ADS  Google Scholar 

  5. R. G. Carlberg, H. K. C. Yee, and E. Ellingson, Astrophys. J. 478 (2), 462 (1997).

    Article  ADS  Google Scholar 

  6. M. Cebrián and I. Trujillo, Monthly Notices Royal Astron. Soc. 444 (1), 682 (2014).

  7. C. Conroy, J. E. Gunn, and M. White, Astrophys. J. 699 (1), 486 (2009).

    Article  ADS  Google Scholar 

  8. D. Eckert, S. Molendi, M. Owers, et al., Astron. and Astrophys. 570, A119 (2014).

    Article  Google Scholar 

  9. M. Einasto, B. Deshev, P. Tenjes, et al., Astron. and Astrophys. 641, A172 (2020).

    Article  Google Scholar 

  10. C. P. Haines, A. Finoguenov, G. P. Smith, et al., Monthly Notices Royal Astron. Soc. 477 (4), 4931 (2018).

    Article  ADS  Google Scholar 

  11. C. P. Haines, M. J. Pereira, G. P. Smith, et al., Astrophys. J. 775 (2), 126 (2013).

    Article  ADS  Google Scholar 

  12. A. Hamabata, T. Oogi, M. Oguri, et al., Monthly Notices Royal Astron. Soc. 488 (3), 4117 (2019).

    Article  ADS  Google Scholar 

  13. A. I. Kopylov and F. G. Kopylova, Astrophysical Bulletin 70 (3), 243 (2015).

    Article  ADS  Google Scholar 

  14. F. G. Kopylova and A. I. Kopylov, Astronomy Letters 39 (1), 1 (2013).

    Article  ADS  Google Scholar 

  15. F. G. Kopylova and A. I. Kopylov, Astrophysical Bulletin 71 (3), 257 (2016).

    Article  ADS  Google Scholar 

  16. F. G. Kopylova and A. I. Kopylov, Astrophysical Bulletin 73 (3), 267 (2018).

    Article  ADS  Google Scholar 

  17. F. G. Kopylova and A. I. Kopylov, Astrophysical Bulletin 74 (4), 365 (2019).

    Article  ADS  Google Scholar 

  18. F. G. Kopylova and A. I. Kopylov, Astrophysical Bulletin 75 (4), 376 (2020).

    Article  ADS  Google Scholar 

  19. F. G. Kopylova and A. I. Kopylov, Astrophysical Bulletin, 2022 (in press).

  20. A. Liu, H. Yu, A. Diaferio, et al., Astrophys. J. 863 (1), 102 (2018).

    Article  ADS  Google Scholar 

  21. M. Markevitch, T. J. Ponman, P. E. J. Nulsen, et al., Astrophys. J. 541 (2), 542 (2000).

    Article  ADS  Google Scholar 

  22. M. Markevitch and A. Vikhlinin, Physics Reports 443 (1), 1 (2007).

    Article  ADS  Google Scholar 

  23. J. Matharu, A. Muzzin, G.B. Brammer, et al., Monthly Notices Royal Astron. Soc. 484 (1), 595 (2019).

    Article  ADS  Google Scholar 

  24. L. Mayer, C. Mastropietro, J. Wadsley, et al., Monthly Notices Royal Astron. Soc. 369 (3), 1021 (2006).

    Article  ADS  Google Scholar 

  25. A. Oemler, Jr., L. E. Abramson,M. D. Gladders, et al., Astrophys. J. 844 (1), 45 (2017).

    Article  ADS  Google Scholar 

  26. K. A. Oman, M. J. Hudson, and P. S. Behroozi, Monthly Notices Royal Astron. Soc. 431 (3), 2307 (2013).

    Article  ADS  Google Scholar 

  27. M. S. Owers, P. E. J. Nulsen, and W. J. Couch, Astrophys. J. 741 (2), 122 (2011).

    Article  ADS  Google Scholar 

  28. B. M. Poggianti, R. Calvi, D. Bindoni, et al., IAU Symp. 295, 151 (2013).

  29. B. M. Poggianti, I. Smail, A. Dressler, et al., Astrophys. J. 518 (2), 576 (1999).

    Article  ADS  Google Scholar 

  30. F. Pranger, I. Trujillo, L. S. Kelvin, and M. Cebrián, Monthly Notices Royal Astron. Soc. 467 (2), 2127 (2017).

    Article  ADS  Google Scholar 

  31. M. Rossetti, D. Eckert, S. De Grandi, et al., Astron. and Astrophys. 556, A44 (2013).

    Article  Google Scholar 

  32. M. A. Strauss, D. H. Weinberg, R. H. Lupton, et al., Astron. J. 124 (3), 1810 (2002).

    Article  ADS  Google Scholar 

  33. C. Tchernin, D. Eckert, S. Ettori, et al., Astron. and Astrophys. 595, A42 (2016).

    Article  Google Scholar 

  34. E. R. Tittley and M. Henriksen, Astrophys. J. 618 (1), 227 (2005).

    Article  ADS  Google Scholar 

  35. T. Venturi, M. Rossetti, G. Brunetti, et al., Astron. and Astrophys. 603, A125 (2017).

    Article  Google Scholar 

  36. A. A. Vikhlinin, A. V. Kravtsov, M. L. Markevich, et al., Physics–Uspekhi 57 (4), 317 (2014).

    Article  ADS  Google Scholar 

  37. A. R. Wetzel, J. L. Tinker, and C. Conroy, Monthly Notices Royal Astron. Soc. 424 (1), 232 (2012).

    Article  ADS  Google Scholar 

  38. A. R. Wetzel, J. L. Tinker, C. Conroy, and F. C. van den Bosch, Monthly Notices Royal Astron. Soc. 432 (1), 336 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. G. Kopylova.

Ethics declarations

The authors declare no conflict of interest regarding the publication of this paper.

Additional information

Translated by N. Oborina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kopylova, F.G., Kopylov, A.I. Galaxy Cluster A 2142: Halo Boundary, “Red Sequence”, Properties of Galaxies Based on SDSS. Astrophys. Bull. 77, 22–30 (2022). https://doi.org/10.1134/S1990341322010059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990341322010059

Keywords:

Navigation