Skip to main content
Log in

Comparison of Spectral Properties of Microwave Background Inhomogeneities on Planck Multi-Frequency Maps Near RCR Catalog Sources with Spectral Properties of NVSS and Planck Catalog Sources

  • Published:
Astrophysical Bulletin Aims and scope Submit manuscript

Abstract—The study of the relationship of positive fluctuations on Planck frequency maps with the nearest radio sources of the RCR catalog (RATAN Cold Refined) was continued. A linear correlation was found between the spectral indices of radio sources at frequencies of 1.4 and 3.94 GHz and the spectral indices of the nearest spots in the frequency range of 30–217 GHz. The spectral indices of NVSS sources in the range of 150 MHz–3.94 GHz were compared with the spectral indices of the nearest objects of the Planck catalog in the range of 30–217 GHz, between which a linear correlation was also found. The dependences between the spectral indices of RCR sources and the spectral indices of spots and the dependences between the spectral indices of NVSS sources and the objects of the Planck catalog turned out to be identical. The differences in the tangents of the angles of inclination of the approximating lines of these dependencies ranged from 8 to 21%. Combined spectra are constructed for RCR sources and the nearest positive spots, as well as for NVSS sources and the nearest objects of the Planck catalog. It is shown that some of the spots detected near RCR objects are most likely their manifestation in the submillimeter range. In a larger group of spots whose flux densities exceed the flux densities of radio sources extrapolated to the microwave region of the spectrum, these discrepancies may be due to inaccuracy of calibrations or a random coincidence of their coordinates. However, a more detailed study of the combined spectra of NVSS and Planck sources in the range of 70 MHz–857 GHz showed that the shape of the spectra of RCR objects and nearby spots can be explained by the variability of radio sources. The spectrum of averaged temperatures of hot spots detected near RCR sources was constructed, which showed a quantitative excess over those obtained earlier by modeling, which can be explained by the influence of synchrotron background or the contribution of radio sources or their host galaxies to radiation in the submillimeter range. The appearance of the obtained spectrum indicates that most of the spots have an extragalactic nature. The obtained statistics of spectral indices confirm the connection of radio sources with the nearest positive spots on Planck frequency maps. We believe that the contribution of unaccounted radio sources to the foreground may affect the resulting map of the cosmological microwave background.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

Notes

  1. The “Cold” experiment was conducted on the radio telescope RATAN-600 in the period 1980–1999 at wavelengths of 1.35, 2.08, 3.9, 7.6, 8.23 and 3.1 cm. The main wavelength is 7.6 cm (3.94 GHz).

  2. Photometric and spectroscopic data of SDSS (Abazajian et al., 2009; Aihara et al., 2011; York et al., 2000) and databases of VizieR, SIMBAD and NED were used for identification.

  3. Maps of microwave radiation components of three releases on all mission frequencies, CMB maps and all catalogs are located in the PLA (Planck Legacy Archive) ( http://pla.esac.esa.int/pla/#home).

  4. The main results of the mission are presented on the website https://www.cosmos.esa.int/web/planck/publications.

  5. http://www.astromatic.net/software/sextractor, http://terapix.iap. fr/soft/sextractor.

  6. https://www.sao.ru/cats, https://www.sao.ru/cats/doc/CATS_descr.html.

  7. Examples of the spectra of these sources are shown in Figs. 102 and 119 in Aatrokoski et al. (2011a).

  8. The coordinates of the RCR sources differ from the coordinates of the centers of the spots by no more than \( \pm 25\).

  9. For those sources that do not have a dust component, this range extends from 30 to 857 GHz.

REFERENCES

  1. J. Aatrokoski et al. (Planck Collab.), Astron. and Astrophys. 536, id. A15 (2011a).

  2. K. N. Abazajian, J. K. Adelman-McCarthy, M. A. Agüeros, et al., Astrophys. J. Suppl. 182 (2), 543 (2009).

    Article  ADS  Google Scholar 

  3. R. Adam et al. (Planck Collab.), Astron. and Astrophys. 594, id. A10 (2016a).

  4. P. A. R. Ade et al. (Planck Collab.), Astron. and Astrophys. 536, id. A7 (2011b).

  5. P. A. R. Ade et al. (Planck Collab.), Astron. and Astrophys. 536, id. A8 (2011c).

  6. P. A. R. Ade et al. (Planck Collab.), Astron. and Astrophys. 536, id. A14 (2011d).

  7. P. A. R. Ade et al. (Planck Collab.), Astron. and Astrophys. 550, id. A133 (2013).

  8. P. A. R. Ade et al. (Planck Collab.), Astron. and Astrophys. 571, id. A1 (2014a).

  9. P. A. R. Ade et al. (Planck Collab.), Astron. and Astrophys. 571, id. A16 (2014b).

  10. P. A. R. Ade et al. (Planck Collab.), Astron. and Astrophys. 571, id. A20 (2014c).

  11. P. A. R. Ade et al. (Planck Collab.), Astron. and Astrophys. 571, id. A28 (2014d).

  12. P. A. R. Ade et al. (Planck Collab.), Astron. and Astrophys. 582, id. A28 (2015).

  13. P. A. R. Ade et al. (Planck Collab.), Astron. and Astrophys. 594, id. A26 (2016b).

  14. P. A. R. Ade et al. (Planck Collab.), Astron. and Astrophys. 594, id. A27 (2016c).

  15. P. A. R. Ade et al. (Planck Collab.), Astron. and Astrophys. 596, id. A106 (2016d).

  16. H. Aihara, C. Allende Prieto, D. An, et al., Astrophys. J. Suppl. 193 (2), 29 (2011).

    Article  ADS  Google Scholar 

  17. Y. Akrami et al. (Planck Collab.), Astron. and Astrophys. 619, id. A94 (2018).

  18. C. L. Bennett, M. Halpern, G. Hinshaw, et al., Astrophys. J. Suppl. 148 (1), 1 (2003).

    Article  ADS  Google Scholar 

  19. C. L. Bennett, D. Larson, J. L. Weiland, et al., VizieR Online Data Catalog J/ApJS/208/20 (2013).

  20. E. Bertin and S. Arnouts, Astron. and Astrophys. Suppl. 117, 393 (1996).

    Article  ADS  Google Scholar 

  21. N. W. Boggess, J. C. Mather, R. Weiss, et al., Astrophys. J. 397, 420 (1992).

    Article  ADS  Google Scholar 

  22. R. C. Bolton, C. J. Chandler, G. Cotter, et al., Monthly Notices Royal Astron. Soc. 367 (1), 323 (2006).

    Article  ADS  Google Scholar 

  23. A. S. Cohen, W. M. Lane, W. D. Cotton, et al., Astron. J. 134 (3), 1245 (2007).

    Article  ADS  Google Scholar 

  24. J. J. Condon, W. D. Cotton, E. W. Greisen, et al., Astron. J. 115 (5), 1693 (1998).

    Article  ADS  Google Scholar 

  25. R. Coppejans, D. Cseh, S. van Velzen, et al., Monthly Notices Royal Astron. Soc. 459 (3), 2455 (2016).

    Article  ADS  Google Scholar 

  26. R. Coppejans, D. Cseh, W. L. Williams, et al., VizieR Online Data Catalog J/MNRAS/450/1477 (2015).

  27. D. Dallacasa, M. Bondi, W. Alef, and F. Mantovani, Astron. and Astrophys. Suppl. 129, 219 (1998).

    Article  ADS  Google Scholar 

  28. D. Dallacasa, C. Stanghellini, M. Centonza, and R. Fanti, VizieR Online Data Catalog J/A+A/363/887 (2001).

  29. G. De Zotti, C. Burigana, M. Negrello, et al., arXiv e‑prints astro-ph/0411182 (2004).

  30. G. de Zotti, M. Massardi, M. Negrello, and J. Wall, Astron. Astrophys. Rev. 18 (1–2), 1 (2010).

    Article  ADS  Google Scholar 

  31. G. de Zotti, R. Ricci, D. Mesa, et al., Astron. and Astrophys. 431 (3), 893 (2005).

    Article  ADS  Google Scholar 

  32. H. Falcke, E. Körding, and N. M. Nagar, New Astronomy Reviews 48 (11–12), 1157 (2004).

    Article  ADS  Google Scholar 

  33. B. L. Fanaroff and J. M. Riley, Monthly Notices Royal Astron. Soc. 167, 31P (1974).

    Article  ADS  Google Scholar 

  34. C. Fanti, R. Fanti, P. Parma, et al., Astron. and Astrophys. 143, 292 (1985).

    ADS  Google Scholar 

  35. R. Fanti, C. Fanti, R. T. Schilizzi, et al., Astron. and Astrophys. 231, 333 (1990).

    ADS  Google Scholar 

  36. B. R. Granett, M. C. Neyrinck, and I. Szapudi, Astrophys. J. 683 (2), L99 (2008).

    Article  ADS  Google Scholar 

  37. P. C. Gregory,W. K. Scott, K. Douglas, and J. J. Condon, Astrophys. J. Suppl. 103, 427 (1996).

    Article  ADS  Google Scholar 

  38. J. S. Hey, S. J. Parsons, and J. W. Phillips, Proc. Royal Soc. of London. Ser. A, Mathematical and Physical Sciences 192 (1030), 425 (1948).

    Google Scholar 

  39. N. Hurley-Walker, J. R. Callingham, P. J. Hancock, et al., Monthly Notices Royal Astron. Soc. 464 (1), 1146 (2017).

    Article  ADS  Google Scholar 

  40. H. T. Intema, P. Jagannathan, K. P. Mooley, and D. A. Frail, Astron. and Astrophys. 598, id. A78 (2017).

  41. M. Kunert-Bajraszewska, M. P. Gawroński, A. Labiano, and A. Siemiginowska, Monthly Notices Royal Astron. Soc. 408 (4), 2261 (2010).

    Article  ADS  Google Scholar 

  42. W. M. Lane, W. D. Cotton, S. van Velzen, et al., Monthly Notices Royal Astron. Soc. 440 (1), 327 (2014).

    Article  ADS  Google Scholar 

  43. E. K. Majorova, O. V. Verkhodanov, and O. P. Zhelenkova, Astrophysical Bulletin 75 (2), 77 (2020).

    Article  ADS  Google Scholar 

  44. E. K. Majorova and O. P. Zhelenkova, Astrophysical Bulletin 76 (2), 109 (2021).

    Article  ADS  Google Scholar 

  45. E. K. Majorova, O. P. Zhelenkova, and A. V. Temirova, Astrophysical Bulletin 70 (1), 33 (2015).

    Article  ADS  Google Scholar 

  46. A. P. Marscher andW. K. Gear, Astrophys. J. 298, 114 (1985).

  47. M. Massardi, M. López-Caniego, J. González-Nuevo, et al., MonthlyNoticesRoyal Astron. Soc. 392 (2), 733 (2009).

    Google Scholar 

  48. H. Murakami, H. Baba, P. Barthel, et al., Publ. Astron. Soc. Japan 59, S369 (2007).

    Article  Google Scholar 

  49. S. T. Myers, N. J. Jackson, I. W. A. Browne, et al., Monthly Notices Royal Astron. Soc. 341 (1), 1 (2003).

    Article  ADS  Google Scholar 

  50. G. Neugebauer, H. J. Habing, R. van Duinen, et al., Astrophys. J. 278, L1 (1984).

    Article  ADS  Google Scholar 

  51. F. Ochsenbein, P. Bauer, and J. Marcout, Astron. and Astrophys. Suppl. 143, 23 (2000).

    Article  ADS  Google Scholar 

  52. C. P. O’Dea, Publ. Astron. Soc. Pacific 110 (747), 493 (1998).

    Article  ADS  Google Scholar 

  53. C. P. O’Dea, S. A. Baum, and C. Stanghellini, Astrophys. J. 380, 66 (1991).

    Article  ADS  Google Scholar 

  54. Iu. N. Pariiski, N. N. Bursov, N. M. Lipovka, et al., Astron. and Astrophys. Suppl. 87, 1 (1991).

    ADS  Google Scholar 

  55. Y. M. Parijskij, N. N. Bursov, N. M. Lipovka, et al., Astron. and Astrophys. Suppl. 98, 391 (1993).

    ADS  Google Scholar 

  56. Y. N. Parijskij and D. V. Korol’kov, Itogi nayki I tekhniki. Asrofizika i kosmicheskaya fizika, 31, 73 (1986).

  57. Y. N. Parijskij, N. S. Soboleva, O. V. Verkhodanov, et al., Bull. Spec. Astrophys. Obs. 40, 125 (1996).

    ADS  Google Scholar 

  58. V. V. Pushkarev, E. K. Majorova, and O. V. Verkhodanov, Astrophysical Bulletin 74 (4), 337 (2019).

    Article  ADS  Google Scholar 

  59. N. S. Soboleva, E. K. Majorova, O. P. Zhelenkova, et al., Astrophysical Bulletin 65 (1), 42 (2010).

    Article  ADS  Google Scholar 

  60. Y. V. Sotnikova, T. V. Mufakharov, E. K. Majorova, et al., Astrophysical Bulletin 74 (4), 348 (2019).

    Article  ADS  Google Scholar 

  61. C. Stanghellini, C. P. O’Dea, D. Dallacasa, et al., Astron. and Astrophys. 443 (3), 891 (2005).

    Article  ADS  Google Scholar 

  62. S. Tinti, D. Dallacasa, G. de Zotti, et al., Astron. and Astrophys. 432 (1), 31 (2005).

    Article  ADS  Google Scholar 

  63. S. Tinti and G. de Zotti, Astron. and Astrophys. 445 (3), 889 (2006).

    Article  ADS  Google Scholar 

  64. I. Torniainen, M. Tornikoski, H. Teräsranta, et al., Astron. and Astrophys. 435 (3), 839 (2005).

    Article  ADS  Google Scholar 

  65. M. Tornikoski, I. Jussila, P. Johansson, et al., Astron. J. 121 (3), 1306 (2001).

    Article  ADS  Google Scholar 

  66. O. V. Verkhodanov, ASP Conf. Ser. 125, 46 (1997).

  67. O. V. Verkhodanov, B. L. Erukhimov, M. L. Monosov, et al., Bull. Spec. Astrophys. Obs. 36, 132 (1993).

    ADS  Google Scholar 

  68. O. V. Verkhodanov, E. K. Majorova, O. P. Zhelenkova, et al., Astrophysical Bulletin 70 (2), 156 (2015).

    Article  ADS  Google Scholar 

  69. O. V. Verkhodanov, E. K. Majorova, O. P. Zhelenkova, et al., Astronomy Reports 60 (7), 630 (2016a).

    Article  ADS  Google Scholar 

  70. O. V. Verkhodanov, D. I. Solovyov, O. S. Ulakhovich, and M. L. Khabibullina, Astrophysical Bulletin 71 (2), 139 (2016b).

    Article  ADS  Google Scholar 

  71. O. V. Verkhodanov, S. A. Trushkin, H. Andernach, and V. N. Chernenkov, Bull. Spec. Astrophys.Obs. 58, 118 (2005).

    ADS  Google Scholar 

  72. E. L. Wright, X. Chen, N. Odegard, et al., VizieR Online Data Catalog J/ApJS/180/283 (2009).

  73. E. L. Wright, P. R. M. Eisenhardt, A. K.Mainzer, et al., Astron. J. 140 (6), 1868 (2010).

    Article  ADS  Google Scholar 

  74. D. G. York, J. Adelman, J. E. Anderson, Jr., et al., Astron. J. 120 (3), 1579 (2000).

    Article  ADS  Google Scholar 

  75. O. P. Zhelenkova and E. K. Majorova, Astrophysical Bulletin 73 (2), 142 (2018).

    Article  ADS  Google Scholar 

  76. O. P. Zhelenkova, N. S. Soboleva, E. K. Majorova, and A. V. Temirova, Astrophysical Bulletin 68 (1), 26 (2013).

    Article  ADS  Google Scholar 

  77. O. P. Zhelenkova, N. S. Soboleva, A. V. Temirova, and N. N. Bursov, Astrophysical Bulletin 72, 150 (2017).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the European Space Agency ESA for open access to the results of observations and data processing in the Planck Legacy Archive. The database of radio astronomy catalogues CATS was used in the construction of radio spectra. The FADPS radio astronomy data processing system was used in the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. K. Majorova.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated by T. Sokolova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majorova, E.K., Zhelenkova, O.P. Comparison of Spectral Properties of Microwave Background Inhomogeneities on Planck Multi-Frequency Maps Near RCR Catalog Sources with Spectral Properties of NVSS and Planck Catalog Sources. Astrophys. Bull. 77, 1–21 (2022). https://doi.org/10.1134/S1990341322010084

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990341322010084

Keywords:

Navigation