Skip to main content
Log in

The Problem of Stem Cell Definition

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

Stem cells play a key role in development and homeostasis, regeneration and evolution. Over the past 150 years, the concept of stem cells has undergone significant changes, but the exact definition of stem cells is lacking. The review discusses significant properties of stem cells such as self-maintenance, regenerative reserve, aging, plasticity and heterogeneity. The stem cell concept evolves as the new methods and techniques to study the fundamental aspects of cell biology are developed. The problem of stem cell definition and prospects for its further study are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Abe, T., Masuya, M., and Ogawa, M., An efficient method for single hematopoietic stem cell (HSC) engraftment in mice based on cell cycle dormancy of HSCs, Exp. Hematol., 2010, vol. 38, pp. 603–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Anjos-Afonso, F., Siapati, E., and Bonnet, D., In vivo contribution of murine mesenchymal stem cells into multiple cell-types under minimal damage conditions, J. Cell Sci., 2004, vol. 117, pp. 5655–5664.

    Article  CAS  PubMed  Google Scholar 

  3. Askenasy, N., From the atom to the cell: is the cat alive? Quantum mechanics and stem cell plasticity as déjà vu, Stem Cells Dev., 2006, vol. 15, pp. 488–491.

    Article  PubMed  Google Scholar 

  4. Back, J., Dierich, A., Bronn, C., Kastner, P., and Chan, S., PU.1, determines the self-renewal capacity of erythroid progenitor cells, Blood, 2004, vol. 103, pp. 3615–3623.

    Article  CAS  PubMed  Google Scholar 

  5. Balaban, R., Nemoto, S., and Finkel, T., Mitochondria, oxidants, and aging, Cell, 2005, vol. 120, pp. 483–495.

    Article  CAS  PubMed  Google Scholar 

  6. Baroffio, A., Dupin, E., and Le Dourin, N., Clone-forming ability and differentiation potential of migratory neural crest cells, Proc. Natl. Acad. Sci. U. S. A., 1988, vol. 85, pp. 5325–5329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Blau, H., Brazelton, T., and Weimann, J., The evolving concept of a stem cell: entity or function?, Cell, 2001, vol. 105, pp. 829–841.

    Article  CAS  PubMed  Google Scholar 

  8. Bjornson, C., Rietze, R., Reynolds, B., Magli, M., and Vescovi, A., Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo, Science, 1999, vol. 283, pp. 534–537.

    Article  CAS  PubMed  Google Scholar 

  9. Boyer, L., Lee, T., Cole, M., Johnstone, S., Levine, S., Zucker, J., Guenther, M., Kumar, R., Murray, H., Jenner, R., Gifford, D., Melton, D., Jaenisch, R., and Young, R., Core transcriptional regulatory circuitry in human embryonic stem cells, Cell, 2005, vol. 122, pp. 947–956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brazelton, T., Rossi, F., Keshet, G., and Blau, H., From marrow to brain: expression of neuronal phenotypes in adult mice, Science, 2000, vol. 290, pp. 1775–1779.

    Article  CAS  PubMed  Google Scholar 

  11. Brown, G., Bunce, C., Lord, J., and McConnell, F., The development of cell lineages: a sequential model, Differentiation, 1989, vol. 39, pp. 83–89.

    Article  Google Scholar 

  12. Bystrykh, L., Verovskaya, E., Zwart, E., Broekhuis, M., and de Haan, G., Counting stem cells: methodological constraints, Nat. Methods, 2012, vol. 9, pp. 567–574.

    Article  CAS  PubMed  Google Scholar 

  13. Camargo, D., Chambers, S., Drew, E., McNagny, K., and Goodell, M., Hematopoietic stem cells do not engraft with absolute efficiencies, Blood, 2006, vol. 107, pp. 501–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Casanova, J., Stemness as a cell default state, EMBO Rep., 2012, vol. 13, pp. 396–397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Castro, R., Jackson, K., Goodell, M., Robertson, C., Liu, H., and Shine, H., Failure of bone marrow cells to transdifferentiate into neural cells in vivo, Science, 2002, vol. 297, p. 1299.

  16. Cheng, T., Rodrigues, N., Shen, H., Yang, Y., Dombkowski, D., Sykes, M., and Scadden, D., Hematopoietic stem cell quiescence maintained by p21cip1/waf1, Science, 2000, vol. 287, pp. 1804–1808.

    Article  CAS  PubMed  Google Scholar 

  17. Clevers, H. and Watt, F., Defining adult stem cells by function, not by phenotype, Annu. Rev. Biochem., 2018, vol. 87, pp. 13.1–13.13.

  18. Copley, M., Beer, P., and Eaves, C., Hematopoietic stem cell heterogeneity takes center stage, Cell Stem Cell, 2012, vol. 10, pp. 690–697.

    Article  CAS  PubMed  Google Scholar 

  19. Cui, J., Wahl, R., and Shen, T., Bone marrow cell trafficking following intravenous administration, Br. J. Haematol., 1999, vol. 107, pp. 895–902.

    Article  CAS  PubMed  Google Scholar 

  20. Domen, J., The role of apoptosis in regulating hematopoietic stem cell numbers, Apoptosis, 2001, vol. 6, pp. 239–252.

    Article  CAS  PubMed  Google Scholar 

  21. Dor, Y., Brown, J., Martinez, O., and Melton, D., Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation, Nature, 2004, vol. 429, pp. 41–46.

    Article  CAS  PubMed  Google Scholar 

  22. Dykstra, B., Olthof, S., Schreuder, J., Ritsema, M., and de Haan, G., Clonal analysis reveals multiple functional defects of aged murine hematopoietic stem cells, J. Exp. Med., 2011, vol. 208, pp. 2691–2703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Eaves, C., Hematopoietic stem cells: concepts, definitions, and the new reality, Blood, 2015, vol. 125, pp. 2605–2613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Eguchi, G., Cellular and molecular background of Wolfian lens regeneration, In: Regulatory mechanisms in development processes,New York:Elsevier, 1988, pp. 147–158.

    Google Scholar 

  25. Engelhardt, M., Lübbert, M., and Guo, Y., CD34+ or CD34: which is the more primitive?, Leukemia, 2002, vol. 16, pp. 1603–1608.

    Article  CAS  PubMed  Google Scholar 

  26. Engels, W., Johnson-Schlitz, D., Flores, C., White, L., and Preston, C., A third link connecting aging with double strand break repair, Cell Cycle, 2007, vol. 6, pp. 131–135.

    Article  CAS  PubMed  Google Scholar 

  27. Fagan, M., Philosophy of stem cell biology: an introduction, Philosophy Compass, 2013a, vol. 8, pp. 1147–1158.

    Article  Google Scholar 

  28. Fagan, M., The stem cell uncertainty principle, Philosophy Sci., 2013b, vol. 80, pp. 945–957.

    Article  Google Scholar 

  29. Fearon, D., Manders, P., and Wagner, S., Arrested differentiation, the self-renewing memory lymphocyte, and vaccination, Science, 2001, vol. 293, pp. 248–250.

    Article  CAS  PubMed  Google Scholar 

  30. Ferrari, G., Cusella-De Angelis, G., Coletta, M., Paolucci, E., Stornaiuolo, A., Cossu, G., and Mavilio, F., Muscle regeneration by bone marrow-derived myogenic progenitors, Science, 1998, vol. 279, pp. 1528–1530.

    Article  CAS  PubMed  Google Scholar 

  31. Graf, T., and Stadtfeld, M., Heterogeneity of embryonic and adult stem cells, Cell Stem Cell, 2008, vol. 3, pp. 480–483.

    Article  CAS  PubMed  Google Scholar 

  32. Guenechea, G., Gan, O., Dorrell, C., and Dick, J., Distinct classes of human stem cells that differ in proliferative and self-renewal potential, Nature Immunol., 2001, vol. 2, pp. 75–82.

    Article  CAS  Google Scholar 

  33. Harrison, D., Astle, C., and Lerner, C., Number and continuous proliferative pattern of transplanted primitive immunohematopoietic stem cells, Proc. Natl. Acad. Sci. USA, 1988, vol. 85, pp. 822–826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hermann, P., Bhaskar, S., Cioffi, M., and Heeschen, C., Cancer stem cells in solid tumors, Semin. Cancer Biol., 2010, vol. 20, pp. 77–84.

    Article  CAS  PubMed  Google Scholar 

  35. Hindley, C. and Philpott, A., The cell cycle and pluripotency, Biochem. J., 2013, vol. 451, pp. 135–143.

    Article  CAS  PubMed  Google Scholar 

  36. Hough, S., Laslett, A., Grimmond, S., Kolle, G., and Pera, M., A continuum of cell states spans pluripotency and lineage commitent in human embryonic stem cells, PLoS One, 2009, vol. 4. e7708.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Hu, M., Krause, D., Greaves, M., Sharkis, S., Dexter, M., Heyworth, C., and Enver, T., Multilineage gene expression precedes commitment in the hemopoietic system, Genes Dev., 1997, vol. 11, pp. 774–785.

    Article  CAS  PubMed  Google Scholar 

  38. Ito, T., Tajima, F., and Ogawa, M., Developmental changes of CD34 expression by murine hematopoietic stem cells, Exp. Hematol., 2000, vol. 28, pp. 1269–1273.

    Article  CAS  PubMed  Google Scholar 

  39. Ivanova, N., Dimos, J., Schaniel, C., Hackney, J., Moore, K., and Lemischka, I., A stem cell molecular signature, Science, 2002, vol. 298, pp. 601–604.

    Article  CAS  PubMed  Google Scholar 

  40. Jones, R., Collector, M., Barber, J., Vala, M., Fackler, M., May, W., Griffin, C., Hawkins, A., Zehnbauer, B., Hilton, J., Colvin, O., and Sharkis, S., Characterization of mouse lymphohematopoietic stem cells lacking spleen colony-forming activity, Blood, 1996, vol. 88, pp. 487–491.

    Article  CAS  PubMed  Google Scholar 

  41. Kaplan, R., Psaila, B., and Lyden, D., Niche-to-niche migration of bone marrow-derived cells, Trends Mol. Med., 2007, vol. 13, pp. 72–81.

    Article  CAS  PubMed  Google Scholar 

  42. Kay, H., How many cell-generations?, Lancet, 1965, vol. 2, pp. 418–419.

    Article  CAS  PubMed  Google Scholar 

  43. Keller, J., Ortiz, M., and Ruscetti, F., Steel factor (c-kit ligand) promotes the survival of hematopoietic stem/progenitor cells in the absence of cell division, Blood, 1995, vol. 86, pp. 1757–1764.

    Article  CAS  PubMed  Google Scholar 

  44. Kerr, C. and Cheng, L., Multiple, interconvertible states of human pluripotent stem cell, Cell Stem Cell, 2010, vol. 6, pp. 497–499.

    Article  CAS  PubMed  Google Scholar 

  45. Kiel, M. and Morrison, S., Uncertainty in the niches that maintain haematopoietic stem cells, Nature Rev. Immunol., 2008, vol. 8, pp. 290–301.

    Article  CAS  Google Scholar 

  46. Kim, J., Chu, J., Shen, X., Wang, J., and Orkin, S., An extended transcriptional network for pluripotency of embryonic stem cells, Cell, 2008, vol. 132, pp. 1049–1061.

    Article  CAS  PubMed  Google Scholar 

  47. Kim, S., Kim, N., Presson, A., Metzger, M., Bonifacino, A., Sehl, M., Chow, S., Crooks, G., Dunbar, C., An, D., Donahue, R., and Chen, I., Dynamics of HSPC repopulation in nonhuman primates revealed by a decade-long clonal-tracking study, Cell Stem Cell, 2014, vol. 14, pp. 473–485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Krause, D., Fackler, M., Civin, C., and May, W., CD34: structure, biology, and clinical utility, Blood, 1996, vol. 87, pp. 1–13.

    Article  CAS  PubMed  Google Scholar 

  49. Lander, A., The 'stem cell' concept: is it holding us back?, J. Biol., 2009, vol. 8, pp. 70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Lemischka, I., Raulet, D., and Mulligan, R., Developmental potential and dynamic behavior of hematopoietic stem cells, Cell, 1986, vol. 45, pp. 917–927.

    Article  CAS  PubMed  Google Scholar 

  51. Lessard, J. and Sauvageau, G., Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells, Nature, 2003, vol. 423, pp. 255–260.

    Article  CAS  PubMed  Google Scholar 

  52. Leychkis, Y., Munzer, S., and Richardson, J., What is stemness?, Stud. Hist. Philos. Biol. Biomed. Sci., 2009, vol. 40, pp. 312–320.

    Article  PubMed  Google Scholar 

  53. Li, L. and Akashi, K., Unraveling the molecular components and genetic blueprints of stem cells, BioTechniques, 2003, vol. 35, pp. 1233–1239.

    Article  CAS  PubMed  Google Scholar 

  54. Liu, Y., Elf, S., Miyata, Y., Sashida, G., Liu, Y., Huang, G., Di Giandomenico, S., Lee, J., Deblasio, A., Menendez, S., Antipin, J., Reva, B., Koff, A., and Nimer, S., p53 regulates hematopoietic stem cell quiescence, Cell Stem Cell, 2009, vol. 4, pp. 37–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mani, S., Guo, W., Liao, M., Eaton, E., Ayyanan, A., Zhou, A., Brooks, M., Reinhard, F., Zhang, C., Shipitsin, M., Campbell, L., Polyak, K., Brisken, C., Yang, J., and Weinberg, R., The epithelial-mesenchymal transition generates cells with properties of stem cells, Cell, 2008, vol. 133, pp. 704–715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Matsuzaki, Y., Kinjo, K., Mulligan, R., and Okano, H., Unexpectedly efficient homing capacity of purified murine hematopoietic stem cells, Immunity, 2004, vol. 20, pp. 87–93.

    Article  CAS  PubMed  Google Scholar 

  57. McKinney-Freeman, S., Jackson, K., Camargo, F., Ferrari, G., Mavilio, F., and Goodell, M., Muscle-derived hematopoietic stem cells are hematopoietic in origin, Proc. Natl. Acad. Sci. U. S. A., 2002, vol. 99, pp. 1341–1346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. McLaren, A., Meiosis and differentiation of mouse germ cells, Symp. Soc. Exp. Biol., 1984, vol. 38, pp. 7–23.

    CAS  PubMed  Google Scholar 

  59. Mezey, E., Chandross, K., Harta, G., Maki, R., and McKercher, S., Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow, Science, 2000, vol. 290, pp. 1779–1782.

    Article  CAS  PubMed  Google Scholar 

  60. Molofsky, A., He, S., Bydon, M., Morrison, S., and Pardal, R., BMI-1 promotes neural stem cell selfrenewal and neural development but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways, Genes Dev., 2005, vol. 19, pp. 1432–1437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Morrison, S., Shah, N., and Anderson, D., Regulatory mechanisms in stem cell biology, Cell, 1997, vol. 88, pp. 287–298.

    Article  CAS  PubMed  Google Scholar 

  62. Morshead, C., Benveniste, P., Iscove, N., and van Der Kooy, D., Hematopoietic competence is a rare property of neural stem cells that may depend on genetic and epigenetic alterations, Nature Med., 2002, vol. 8, pp. 268–273.

    Article  CAS  PubMed  Google Scholar 

  63. Muller-Sieburg, C., Sieburg, H., Bernitz, J., and Cattarossi, G., Stem cell heterogeneity: implications for aging and regenerative medicine, Blood, 2012, vol. 119, pp. 3900–3907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Niwa, H., How is pluripotency determined and maintained?, Development, 2007, vol. 134, pp. 635–646.

    Article  CAS  PubMed  Google Scholar 

  65. Orwig, K., Ryu, B.-Y., Avarbock, M., and Brinster, R., Male germ-line stem cell potential is predicted by morphology of cells in neonatal rat testes, Proc. Natl. Acad. Sci. USA, 2002, vol. 99, pp. 11706–11711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Park, I., Qian, D., Kiel, M., Becker, M., Pihalja, M., Weissman, I., Morrison, S., and Clarke, M., BMI-1 is required for maintenance of adult self-renewing haematopoietic stem cells, Nature, 2003, vol. 423, pp. 302–305.

    Article  CAS  PubMed  Google Scholar 

  67. Petersen, B., Bowen, W., Patrene, K., Mars, W., Sullivan, A., Murase, N., Boggs, S., Greenberger, J., and Goff, J., Bone marrow as a potential source of hepatic oval cells, Science, 1999, vol. 284, pp. 1168–1170.

    Article  CAS  PubMed  Google Scholar 

  68. Potten, C. and Loeffler, M., Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt, Development, 1990, vol. 110, pp. 1001–1020.

    CAS  PubMed  Google Scholar 

  69. Prindull, G. and Zipori, D., Environmental guidance of normal and tumor cell plasticity: epithelial mesenchymal transitions as a paradigm, Blood, 2004, vol. 103, pp. 2892–2899.

    Article  CAS  PubMed  Google Scholar 

  70. Romalho-Santos, M., Yoon, S., Matsuzaki, Y., Mulligan, R., and Melton, D., “Stemness”: transcriptional profiling of embryonic and adult stem cells, Science, 2002, vol. 298, pp. 597–600.

    Article  CAS  Google Scholar 

  71. Rossi, D., Seita, J., Czechowicz, A., Bhattacharya, D., Bryder, D, and Weissman, I., Hematopoietic stem cell quiescence attenuates DNA damage response and permits DNA damage accumulation during aging, Cell Cycle, 2007, vol. 6, pp. 2371–2376.

    Article  CAS  PubMed  Google Scholar 

  72. Sato, T., Laver, J., and Ogawa, M., Reversible expression of CD34 by murine hematopoietic stem cells, Blood, 1999, vol. 94, pp. 2548–2554.

    Article  CAS  PubMed  Google Scholar 

  73. Seaberg, R. and van der Kooy, D., Stem and progenitor cells: the premature desertion of rigorous definitions, Trends Neurosci., 2003, vol. 26, pp. 125–131.

    Article  CAS  PubMed  Google Scholar 

  74. Sharma, S. and Gurudutta, G., Epigenetic regulation of hematopoietic stem cells, Int. J. Stem Cells, 2016, vol. 9, pp. 36–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Shen, C., Slack, J., and Tosh, D., Molecular basis of transdifferentiation of pancreas to liver, Nat. Cell Biol., 2000, vol. 2, pp. 879–887.

    Article  CAS  PubMed  Google Scholar 

  76. Shepherd, B., Guttorp, P., Landsdorp, P., and Abkowitz, J., Estimating human hematopoietic stem cell kinetics using granulocyte telomere lengths, Exp. Hematol., 2004, vol. 32, pp. 1040–1050.

    Article  CAS  PubMed  Google Scholar 

  77. Shimoto, M., Sugiyama, T., and Nagasawa, T., Numerous niches for hematopoietic stem cells remain empty during homeostasis, Blood, 2017, vol. 129, pp. 2124–2131.

    Article  CAS  PubMed  Google Scholar 

  78. Sieburg, H., Cho, R., Dykstra, B., Uchida, N., Eaves, C., and Muller-Sieburg, C., The hematopoietic stem compartment consists of a limited number of discrete stem cell subsets, Blood, 2006, vol. 107, pp. 2311–2316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Slack, J., Stem cells in epithelial tissues, Science, 2000, vol. 287, pp. 1431–1433.

    Article  CAS  PubMed  Google Scholar 

  80. Snoeck, H., Aging of the hematopoietic system, Curr. Opin. Hematol., 2013, vol. 20, pp. 355–361.

    Article  CAS  PubMed  Google Scholar 

  81. Spivakov, M. and Fisher, A., Epigenetic signatures of stem-cell identity, Nat. Rev. Genet., 2007, vol. 8, pp. 263–271.

    Article  CAS  PubMed  Google Scholar 

  82. Sun, J., Ramos, A., Chapman, B., Johnnidis, J., Le, L., Ho, Y.-J., Klein, A., Hofmann, O., and Camargo, F., Clonal dynamics of native haematopoiesis, Nature, 2014, vol. 514, pp. 322–327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Terada, N., Hamazaki, T., Oka, M., Hoki, M., Mastalerz, D., Nakano, Y., Meyer, E., Morel, L., Petersen, B., and Scott, E., Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion, Nature, 2002, vol. 416, pp. 542–545.

    Article  CAS  PubMed  Google Scholar 

  84. Terskikh, V., Vasiliev, A., and Vorotelyak, E., Structural-functional units of epidermis, Biol. Bull., 2003, vol. 30. no. 6, pp. 535–539.

    Article  Google Scholar 

  85. Torres-Padilla, M. and Chambers, I., Transcription factor heterogeneity in pluripotent stem cells: a stochastic advantage, Development, 2014, vol. 141, pp. 2173–2181.

    Article  CAS  PubMed  Google Scholar 

  86. Trentin, A., Glavieux-Pardanaud, C., Le Douarin, N., and Dupin, E., Self-renewal capacity is a widespread property of various types of neural crest precursor cells, Proc. Natl. Acad. Sci. U. S. A., 2004, vol. 101, pp. 4495–4500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tropepe, V., Coles, B., Chiasson, B., Horsford, D., Elia, A., Mclnnes, R., and van der Kooy, D., Retinal stem cells in the adult mammalian eye, Science, 2000, vol. 287, pp. 2032–2036.

    Article  CAS  PubMed  Google Scholar 

  88. Van Zant, G., Studies of hematopoietic stem cells spared by 5-fluorouracil, J. Exp. Med., 1984, vol. 159, pp. 679–690.

    Article  CAS  PubMed  Google Scholar 

  89. Venezia, T., Merchant, A., Ramos, C., Whitehouse, N., Young, A., Shaw, C., and Goodell, M., Molecular signatures of proliferation and quiescence in hematopoietic stem cells, PLoS Biol., 2004, vol. 2. e301.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Vousden, K. and Lane, D., p53 in health and disease, Nat. Rev. Mol. Cell Biol., 2007, vol. 8, pp. 275–283.

    Article  CAS  PubMed  Google Scholar 

  91. Wagers, A., Sherwood, R., Christensen, J., and Weissman, I., Little evidence for developmental plasticity of adult hematopoietic stem cells, Science, 2002, vol. 297, pp. 2256–2259.

    Article  CAS  PubMed  Google Scholar 

  92. Wagers, A. and Weissman, I., Plasticity of adult stem cells, Cell, 2004, vol. 116, pp. 639–648.

    Article  CAS  PubMed  Google Scholar 

  93. Wagner, W., Bork, S., Horn, P., Krunic, D., Walenda, T., Diehlmann, A., Benes, V., Blake, J., Huber, F., Eckstein, V., Boukamp, P., and Ho, A., Aging and replicative senescence have related effects on human stem and progenitor cells, PLoS One, 2009, vol. 4. e5846.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Wang, X. and Guda, C., Computational analysis of transcriptional circuitries in human embryonic stem cells reveals multiple and independent networks, Biomed. Res. Int., 2014, vol. 2014, p. 725780.

    PubMed  PubMed Central  Google Scholar 

  95. Wang, J., Kimura, T., Asada, R., Harada, S., Yokota, S., Kawamoto, Y., Fujimura, Y., Tsuji, T., Ikehara, S., and Sonoda, Y., SCID-repopulating cell activity of human cord blood-derived CD34-cells assured by intra-bone marrow injection, Blood, 2003, vol. 101, pp. 2924–2931.

    Article  CAS  PubMed  Google Scholar 

  96. Wang, L., Siegenthaler, J., Dowell, R., and Yi, R., Foxc1 reinforces quiescence in self-renewing hair follicle stem cells, Science, 2016, vol. 351, pp. 613–617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Weissman, I., Stem cells: units of development, units of regeneration, and units in evolution, Cell, 2000, vol. 100, pp. 157–168.

    Article  CAS  PubMed  Google Scholar 

  98. Whetton, A. and Graham, G., Homing and mobilization in the stem cell niche, Trends Cell Biol., 1999, vol. 9, pp. 233–238.

    Article  CAS  PubMed  Google Scholar 

  99. Wilson, A., Laurenti, E., Oser, G., van der Wath, R., Blanco-Bose, W., Jaworski, M., Offner, S., Dunant, C., Eshkind, L., Bockamp, E., Lió, P., MacDonald, H., and Trumpp, A., Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair, Cell, 2008, vol. 135, pp. 1118–1129.

    Article  CAS  PubMed  Google Scholar 

  100. Yanger, K. and Stanger, B., Facultative stem cells in liver and pancreas: fact and fancy, Dev. Dyn., 2011, vol. 240, pp. 521–529.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Ying, Q., Wray, J., Nichols, J., Batlle-Morera, L., Doble, B., Woodgett, J., Cohen, P., and Smith, A., The ground state of embryonic stem cell self-renewal, Nature, 2008, vol. 453, pp. 519–523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zhang, X., Ebata, K., Robaire, B., and Nagano, M., Aging of male germ line stem cells in mice, Biol. Reprod., 2006, vol. 74, pp. 119–124.

    Article  CAS  PubMed  Google Scholar 

  103. Zipori, D., The nature of stem cells: state rather than entity, Nat. Rev. Genet., 2004, vol. 5, pp. 873–878.

    Article  CAS  PubMed  Google Scholar 

  104. Zipori, D., The stem state: plasticity is essential, whereas self-renewal and hierarchy are optional, Stem Cells, 2005, vol. 23, pp. 719–726.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was supported by Ministry of Science and Higher Education of the Russian Federation for Research Project “Development of Technology of manufacturing, storage, and application of biomedical cell products for wound healing” in accordance with grant agreement no. 075-15-2019-1243 approved on June 7, 2019, unique identifier RFMEFI61017X0012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekaterina Vorotelyak.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekaterina Vorotelyak, Vasiliev, A. & Terskikh, V. The Problem of Stem Cell Definition. Cell Tiss. Biol. 14, 169–177 (2020). https://doi.org/10.1134/S1990519X20030086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X20030086

Keywords:

Navigation