Skip to main content
Log in

The Effect of Modified Nanodiamonds on the Wettability of the Surface of an Optical Oxygen Sensor and Biological Fouling During Long-Term in Situ Measurements

  • DEVICES AND PRODUCTS BASED ON NANOMATERIALS AND NANOTECHNOLOGIES
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

A method is proposed for controlling the wettability of the surface of a fluorinated material and for controlling its biofouling by introducing modified nanodiamonds into the structure. The optimal modification conditions were determined by means of a set of methods based on the example of a molecular oxygen sensor. They do not lead to a change in other functional properties of the material, such as the calibration curve and response time. In vitro tests have shown that a small amount of aminated nanodiamonds gives the surface bactericidal properties, but with a high content, improved adhesion of the biomaterial is observed due to a decrease in hydrophobicity. Long-term in situ tests under conditions simulating a bioreactor with actively growing biomass showed an almost complete absence of biological fouling of the modified material and revealed a significant fouling of the sensor from traditionally used polystyrene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. O. S. Wolfbeis, Bioessays 37, 921 (2015). https://doi.org/10.1002/bies.201500002

    Article  CAS  Google Scholar 

  2. A. P. Antropov, A. V. Ragutkin, P. V. Melnikov, et al., IOP Conf. Ser.: Mater. Sci. Eng. 289, 012031 (2018). https://doi.org/10.1088/1757-899x/289/1/012031

  3. P. V. Melnikov, A. O. Naumova, A. Yu. Alexandrovskaya, and N. K. Zaitsev, Nanotechnol. Russ. 13, 602 (2018). https://doi.org/10.1134/S1995078018060083

    Article  CAS  Google Scholar 

  4. P. V. Melnikov, A. E. Kozhukhova, A. O. Naumova, et al., Int. J. Eng. Trans. B: Appl. 32, 641 (2019). https://doi.org/10.5829/ije.2019.32.05b.03

    Article  Google Scholar 

  5. K. H. Chae, D. W. Hong, M. K. Lee, et al., Sens. Actuators, B 173, 636 (2012). https://doi.org/10.1016/j.snb.2012.07.086

    Article  CAS  Google Scholar 

  6. J. M. Bolivar, S. Schelch, T. Mayr, et al., ACS Catal. 5, 5984 (2015). https://doi.org/10.1021/acscatal.5b01601

    Article  CAS  Google Scholar 

  7. P. Zhu, W. Meng, and Y. Huang, RSC Adv. 7, 3179 (2017). https://doi.org/10.1039/C6RA26409C

  8. A. A. Zharov, I. B. Konovalova, and E. V. Polunin, Russ. Chem. Bull. 65, 233 (2016). https://doi.org/10.1007/s11172-016-1290-6

    Article  CAS  Google Scholar 

  9. V. I. Sokolov, I. O. Goriachuk, S. I. Molchanova, et al., Russ. Chem. Bull. 68, 559 (2018). https://doi.org/10.1007/s11172-019-2454-y

    Article  CAS  Google Scholar 

  10. M. S. Piskarev, A. B. Gilman, N. A. Shmakova, et al., High Energy Chem. 47, 251 (2013). https://doi.org/10.1134/S001814391305010X

    Article  CAS  Google Scholar 

  11. V. N. Mochalin, I. Neitzel, B. J. M. Etzold, et al., ACS Nano 5, 7494 (2011). https://doi.org/10.1021/nn2024539

    Article  CAS  Google Scholar 

  12. B. V. Spitsyn, J. L. Davidson, M. N. Gradoboev, et al., Diamond Relat. Mater. 15, 296 (2006). https://doi.org/10.1016/j.diamond.2005.07.033

    Article  CAS  Google Scholar 

  13. G. V. Sakovich, A. S. Zharkov, and E. A. Petrov, Nanotechnol. Russ. 8, 581 (2013). https://doi.org/10.1134/S1995078013050121

    Article  Google Scholar 

  14. G. N. Bondarenko, M. M. Ermilova, M. N. Efimov, et al., Ross. Nanotekhnol. 11 (11–12), 41 (2016).

    Google Scholar 

  15. T. S. Kurkin, A. N. Ozerin, E. P. Tikunova, A. S. Kechek’yan, E. K. Golubev, A. K. Berkovich, and V. Yu. Dolmatov, Nanotechnol. Russ. 10, 878 (2015). https://doi.org/10.1134/S1995078015060063

    Article  CAS  Google Scholar 

  16. V. S. Bondar’, I. I. Gitel’zon, A. P. Puzyr’, et al., Ross. Nanotekhnol. 3 (5–6), 42 (2008).

    Google Scholar 

  17. O. Mogilnaya, N. Ronzhin, K. Artemenko, et al., Biocatal. Biotransform. 37, 97 (2019). https://doi.org/10.1080/10242422.2018.1472586

    Article  CAS  Google Scholar 

  18. A. A. Isakova, A. V. Safonov, A. Yu. Alexandrovskaya, et al., Prot. Met. Phys. Chem. Surf. 53, 220 (2017). https://doi.org/10.1134/S2070205117020137

    Article  CAS  Google Scholar 

  19. M. Quaranta, S. M. Borisov, and I. Klimant, Bioanal. Rev. 4, 115 (2012). https://doi.org/10.1007/s12566-012-0032-y

    Article  Google Scholar 

  20. N. K. Zaitsev, V. I. Dvorkin, P. V. Melnikov, et al., J. Anal. Chem. 73, 102 (2018). https://doi.org/10.1134/S1061934818010136

    Article  CAS  Google Scholar 

  21. N. K. Zaitsev, P. V. Melnikov, V. A. Alferov, et al., Proc. Eng. 168, 309 (2016). https://doi.org/10.1016/j.Proeng.2016.11.203

    Article  CAS  Google Scholar 

  22. T. Tolker-Nielsen, U. C. Brinch, P. C. Ragas, et al., J. Bacteriol. 182, 6482 (2000). https://doi.org/10.1128/JB.182.22.6482-6489.2000

    Article  CAS  Google Scholar 

  23. S. J. Pamp and T. Tolker-Nielsen, J. Bacteriol. 189, 2531 (2007). https://doi.org/10.1128/JB.01515-06

    Article  CAS  Google Scholar 

  24. T. M. Buttke, J. A. Mccubrey, and T. C. Owen, J. Immunol. Methods. 157, 233 (1993). https://doi.org/10.1016/0022-1759(93)90092-l

    Article  CAS  Google Scholar 

  25. T. Mosmann, J. Immunol. Methods. 65, 55 (1983). https://doi.org/10.1016/0022-1759(83)90303-4

    Article  CAS  Google Scholar 

  26. J. P. Adkins, L. A. Cornell, and R. S. Tanner, Geomicrobiol. J. 10, 87 (1992). https://doi.org/10.1080/01490459209377909

    Article  Google Scholar 

  27. T. Burleson, N. Yusuf, and A. Stanishevsky, J. Achievem. Mater. Manuf. Eng. 37, 258 (2009).

    Google Scholar 

  28. X. Wang and O. S. Wolfbeis, Chem. Soc. Rev. 43, 3666 (2014). https://doi.org/10.1039/C4CS00039K

    Article  CAS  Google Scholar 

  29. M. Ivanova, E. Burtseva, V. Ivanova, et al., MRS Proc. 1452 (2012). https://doi.org/10.1557/oPl.2012.1226

  30. L. Qian, Y. Guan, B. He, et al., Polymer 49, 2471 (2008). https://doi.org/10.1016/j.Polymer.2008.03.042

    Article  CAS  Google Scholar 

  31. E. Escamilla-García, A. G. Alcázar-Pizaña, J. C. Segoviano-Ramírez, et al., Int. J. Microbiol. 2017, 5924717 (2017). https://doi.org/10.1155/2017/5924717

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation (grant no. 17-79-10439).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Melnikov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleksandrovskaya, A.Y., Melnikov, P.V., Safonov, A.V. et al. The Effect of Modified Nanodiamonds on the Wettability of the Surface of an Optical Oxygen Sensor and Biological Fouling During Long-Term in Situ Measurements. Nanotechnol Russia 14, 389–396 (2019). https://doi.org/10.1134/S1995078019040025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078019040025

Navigation