Skip to main content
Log in

The Membranes with Modified Surface to Stabilize Water Balance of Fuel Cell under Low Humidity Conditions: A Model Study

  • DEVICES AND PRODUCTS BASED ON NANOMATERIALS AND NANOTECHNOLOGIES
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

The problem of water management in a fuel cell with a polymer electrolyte membrane (PEM) under low humidity conditions is most acute. The addition of adsorbents to a membrane improves the water-holding properties of PEMs. A stationary one-dimensional computer model is developed to analyze the distribution of water in the layers of membrane electrode assembly. An ionomer layer modified with an adsorbent is taken into account to increase the concentration of water in the membrane. The spatial distribution of the concentration of water in the catalytic layer and PEM for a standard membrane and a membrane containing a surface modified layer is obtained. The best distribution of water in the membrane is achieved through the addition of a layer with a threefold increase in water capacity from the side adjacent to a cathode catalytic layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. G. Gebel, Polymer 41, 5829 (2000). https://doi.org/10.1016/S0032-3861(99)00770-3

    Article  CAS  Google Scholar 

  2. N. H. Jalani, K. Dunn, and R. Datta, Electrochim. Acta 51, 553 (2005). https://doi.org/10.1016/j.electacta.2005.05.016

    Article  CAS  Google Scholar 

  3. V. di Noto, S. Lavina, E. Negro, et al., Electrochim. Acta 53, 1618 (2007). https://doi.org/10.1016/j.jpowsour.2008.10.066

    Article  CAS  Google Scholar 

  4. W. K. Chao, C. M. Lee, D. C. Tsai, et al., J. Power Sources 185, 136 (2008). https://doi.org/10.1016/j.jpowsour.2008.06.052

    Article  CAS  Google Scholar 

  5. M. S. Kang, Y. J. Choi, H. J. Lee, and S. H. Moon, J. Colloid Interface Sci. 273, 523 (2004). https://doi.org/10.1016/j.jcis.2004.01.050

    Article  CAS  Google Scholar 

  6. F. Chen, B. Mecheri, A. d’Epifanio, et al., Fuel Cells 10, 790 (2010). https://doi.org/10.1002/fuce.200900179

    Article  CAS  Google Scholar 

  7. E. Chalkova, M. V. Fedkin, D. J. Wesolowski, and S. N. Lvov, J. Electrochem. Soc. 152, A1035 (2005). https://doi.org/10.1149/1.1895225

    Article  CAS  Google Scholar 

  8. H. Tamura, A. Tanaka, K. Y. Mita, and R. Furuichi, J. Colloid Interface Sci. 209, 225 (1999). https://doi.org/10.1006/jcis.1998.5877

    Article  CAS  Google Scholar 

  9. N. H. Jalani, K. Dunn, and R. Datta, Electrochim. Acta 51, 553 (2005). https://doi.org/10.1016/j.electacta.2005.05.016

    Article  CAS  Google Scholar 

  10. K. T. Adjemian, R. Dominey, L. Krishnan, et al., Chem. Mater. 18, 2238 (2006). https://doi.org/10.1021/cm051781b

    Article  CAS  Google Scholar 

  11. J. Li, G. Xu, X. Luo, et al., Appl. Energy 213, 408 (2018). https://doi.org/10.1016/j.apenergy.2018.01.052

    Article  CAS  Google Scholar 

  12. Y. J. Kim, W. C. Choi, S. I. Woo, and W. H. Hong, J. Membrane Sci. 238, 213 (2004). https://doi.org/10.1016/j.memsci.2004.04.005

    Article  CAS  Google Scholar 

  13. E. Y. Safronova and A. B. Yaroslavtsev, Solid State Ionics 221, 6 (2012). https://doi.org/10.1016/j.ssi.2012.05.030

    Article  CAS  Google Scholar 

  14. G. Alberti, M. Casciola, D. Capitani, et al., Electrochim. Acta 52, 8125 (2007). https://doi.org/10.1016/j.electacta.2007.07.019

    Article  CAS  Google Scholar 

  15. M. Casciola, D. Capitani, A. Comite, et al., Fuel Cells 8, 217 (2008). https://doi.org/10.1002/fuce.200800005

    Article  CAS  Google Scholar 

  16. I. Nicotera, L. Coppola, C. O. Rossi, et al., J. Phys. Chem. B 113, 13935 (2009). https://doi.org/10.1021/jp904691g

    Article  CAS  Google Scholar 

  17. R. Vetter and J. O. Schumacher, Comput. Phys. Commun. 234, 223 (2019). https://doi.org/10.1016/j.cpc.2018.07.023

    Article  CAS  Google Scholar 

  18. Y. P. Ying, S. K. Kamarudin, and M. S. Masdar, Int. J. Hydrogen Energy 43, 16068 (2018). https://doi.org/10.1016/j.ijhydene.2018.06.171

    Article  CAS  Google Scholar 

  19. A. B. Yaroslavtsev, Y. A. Karavanova, and E. Y. Safro-nova, Pet. Chem. 51, 473 (2011). https://doi.org/10.1134/S0965544111070140

    Article  CAS  Google Scholar 

  20. C. Yin, L. Wang, J. Li, et al., Phys. Chem. Chem. Phys. 19, 15953 (2017). https://doi.org/10.1039/C7CP03052E

    Article  CAS  Google Scholar 

  21. G. Vasu, A. K. Tangirala, B. Viswanathan, and K. S. Dhathathreyan, Int. J. Hydrogen Energy 33, 4640 (2008). https://doi.org/10.1016/j.ijhydene.2008.05.051

    Article  CAS  Google Scholar 

  22. I. Nicotera, T. Zhang, A. Bocarsly, and S. Greenbaum, J. Electrochem. Soc. 154, B466 (2007). https://doi.org/10.1149/1.2712833

    Article  CAS  Google Scholar 

  23. C. C. Ke, X. J. Li, Q. Shen, et al., Int. J. Hydrogen Energy 36, 3606 (2011). https://doi.org/10.1016/j.ijhydene.2010.12.030

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Ministry of Science and Higher Education (project no. RFMEFI60419X0243).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Mensharapov.

Additional information

Translated by A. Tulyabaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mensharapov, R.M., Fateev, V.N. The Membranes with Modified Surface to Stabilize Water Balance of Fuel Cell under Low Humidity Conditions: A Model Study. Nanotechnol Russia 15, 363–369 (2020). https://doi.org/10.1134/S1995078020030088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078020030088

Navigation