Skip to main content
Log in

Features of Behavioral Responses of the Mediterranean Mussel in Its Natural Habitat of the Black Sea

  • BIOLOGY, MORPHOLOGY, AND TAXONOMY OF AQUATIC ORGANISMS
  • Published:
Inland Water Biology Aims and scope Submit manuscript

Abstract

Typical characteristics of the behavioral reactions of the Mediterranean mussel Mytilus galloprovicialis Lam, 1819 in its natural habitat of the Black Sea have been investigated using the originally developed automated biomonitoring complex of the aquatic environment. The valve movements exhibit a pronounced, clear solar diurnal rhythm, with maximum valve opening amplitude at night and minimum in the daytime at ambient natural environmental conditions throughout the year. Two types of valve movements are defined in the diurnal rhythm of the activity of the mussels inhabiting the Black Sea. Mollusks react acutely to abrupt fluctuations in the physical factors of the environment by closing the valves instantly for a short time, which is a manifestation of protective reflexes. The manifestation of stress signs is observed in behavioral reactions to an abnormal acute decrease in water temperature and prolonged exposure to a high water temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Anestis, A., Lazou, A., Portner, H.O., and Michaelidis, B., Behavioral, metabolic, and molecular stress responses of marine bivalve Mytilus galloprovincialis during long-term acclimation at increasing ambient temperature, Am. J. Physiol. Regul. Integr. Comp. Physiol., 2007, vol. 293, pp. R911–R921. https://doi.org/10.1152/ajpregu.00124.2007

    Article  CAS  PubMed  Google Scholar 

  2. Barnes, G.E., The behaviour of Anodonta cygnea L., and its neurophysiological basis, J. Exp. Biol., 1955, vol. 32, pp. 158–174.

    Google Scholar 

  3. Borcherding, J., Ten years of practical experience with the Dreissena-monitor, a biological early warning system for continuous water quality monitoring, Hydrobiologia, 2006, vol. 556, pp. 417–426. https://doi.org/10.1007/s10750-005-1203-4

    Article  CAS  Google Scholar 

  4. Comeau, L.A., Babarro, J.M.F., Longa, A., and Padin, X.A., Valve-gaping behavior of raft-cultivated mussels in the Ría de Arousa, Spain, Aquacult. Rep., 2018, vol. 9, pp. 68–73. https://doi.org/10.1016/j.aqrep.2017.12.005

    Article  Google Scholar 

  5. Connor, K.M. and Robles, C.D., Within-site variation of growth rates and terminal sizes in Mytilus californianus along wave exposure and tidal gradients, Biol. Bull., 2015, vol. 228, pp. 39–51.

    Article  Google Scholar 

  6. Curtis, T.M., Williamson, R., and Depledge, M.H., Simultaneous, long-term monitoring of valve and cardiac activity in the blue mussel Mytilus edulis exposed to copper, Mar. Biol., 2000, vol. 136, pp. 837–846.

    Article  CAS  Google Scholar 

  7. Gnyubkin, V.F., The valve-movement model for the Mediterranean Mussel, Mytilus galloprovincialis Lamarck, 1819 (Bivalvia: Mytilidae), Russ. J. Mar. Biol., 2015, vol. 41, no. 1, pp. 40–51.

    Article  CAS  Google Scholar 

  8. Gonzalez, J.G. and Yevich, P., Responses of an estuarine population of the blue mussel Mytilus edulis to heated water from a steam generating plant, Mar. Biol., 1976, vol. 34, no. 2, pp. 177–189. https://doi.org/10.1007/BF00390760

    Article  Google Scholar 

  9. Gracey, A.Y. and Connor, K., Transcriptional and metabolomic characterization of spontaneous metabolic cycles in Mytilus californianus under subtidal conditions, Mar. Genomics, 2016, vol. 30, pp. 35–41. https://doi.org/10.1016/j.margen.2016.07.004

    Article  PubMed  Google Scholar 

  10. Hopkins, A.E., Galtsoff, P.S., and McMillin, H.C., Effects of pulp mill pollution on oysters [U.S.], Bur. Fish., 1931, vol. 47, no. 6, pp. 125–186.

    Google Scholar 

  11. Kholodov, V.I., Pirkova, A.V., and Ladygina, L.V., Vyrashchivanie midii i ustrits v Chernom more (Cultivation of Mussels and Oysters in the Black Sea), Sevastopol: Inst. Biol. Yuzh. Morei, 2010.

  12. Kim, W.-S., Huh, H.-T., Je, J.-G., and Han, K.-N., Evidence of two-clock control of endogenous rhythm in the Washington clam, Saxidomus purpuratus, Mar. Biol., 2003, vol. 142, pp. 305–309.

    Article  Google Scholar 

  13. Kramer, K.J.M. and Foekema, E.M., The “Musselmonitor®” as biological early warning system, in Biomonitors and Biomarkers as Indicators of Environmental Change 2, Environ. Sci. Res., 2001, vol. 56, p. 59–87.

  14. Lesser, M.P., Bailey, M., Merselis, D., and Morrison, J.R., Physiological response of the blue mussel Mytilus edulis to differences in food and temperature in the Gulf of Maine, Comp. Biochem. Physiol., 2010, vol. 156, pp. 541–551.

    Article  Google Scholar 

  15. Li, Y., Qin, J.G., Abbott, C.A., Li, X., and Benkendorff, K., Synergistic impacts of heat shock and spawning on the physiology and immune health of Crassostrea gigas: an explanation for summer mortality in Pacific oysters, Am. J. Regul. Integr. Comp. Physiol., 2007, vol. 293, no. 6, pp. 2353–2362.

    Article  Google Scholar 

  16. Martella, T., Some factors influencing the byssus thread production in Mytilus edulis (Mollusca: Bivalvia) Linnaeus, 1758, Water, Air Soil Pollut., 1974, vol. 3, pp. 171–177.

    Google Scholar 

  17. Mat, A.M., Massabuau, J.-C., Ciret, P., and Tran, D., Looking for the clock mechanism responsible for circatidal behavior in the oyster Crassostrea gigas, Mar. Biol., 2014, vol. 161, no. 1, pp. 89–99.

    Article  Google Scholar 

  18. Naylor, E., Chronobiology of Marine Organisms, Cambridge: Cambridge Univ. Press, 2010.

    Book  Google Scholar 

  19. Newell, C.R., Wildish, D.J., and MacDonald, B.A., The effects of velocity and seston concentration on the exhalant siphon area, valve gape and filtration rate of the mussel Mytilus edulis, J. Exp. Mar. Biol. Ecol., 2001, vol. 262, pp. 91–111.

    Article  Google Scholar 

  20. Ortmann, C. and Grieshaber, M., Energy metabolism and valve closure behaviour in the Asian clam Corbicula fluminea, J. Exp. Biol., 2003, vol. 206, pp. 4167–4178.

    Article  CAS  Google Scholar 

  21. Riisgard, H.U., Egede, P.P., and Saavedrai, B., Feeding behaviour of the mussel, Mytilus edulis: new observations, with a minireview of current knowledge, J. Mar. Biol., 2011, vol. 2011, ID 312459.

  22. Robson, A. and de Leaniz, C.G., Effect of anthropogenic feeding regimes on activity rhythms of laboratory mussels exposed to natural light, Hydrobiologia, 2010, vol. 655, pp. 197–204. https://doi.org/10.1007/s10750-010-0449-7

    Article  Google Scholar 

  23. Ryabushko, V.I., Kozintsev, A.F., Makarchuk, T.L., and Shinkarenko, V.K., The content of heavy metals in the mussel Mytilus galloprovincialis from the Kazach’ya Bay (Black Sea), Morsk. Biotekh. Sist., 2002, no. 2, pp. 215–221.

  24. Saurel, C., Gascoigne, J.C., Palmer, M.R., and Kaiser, M.J., In situ mussel feeding behavior in relation to multiple environmental factors: regulation through food concentration and tidal conditions, Am. Soc. Limnol. Oceanogr., 2007, vol. 52, no. 5, pp. 1919–1929.

    Article  Google Scholar 

  25. Somero, G.N., Thermal physiology and vertical zonation of intertidal animals: optima, limits, and costs of living, Integr. Comp. Biol., 2002, vol. 42, no. 4, pp. 780–789.

    Article  Google Scholar 

  26. Tran, D., Nadau, A., Durrieu, G., et al., Field chronobiology of a molluscan bivalve: how the moon and sun cycles interact to drive oyster activity rhythms, Chronobiol. Int., 2011, vol. 28, no. 4, pp. 307–317.

    Article  Google Scholar 

  27. Tran, D., Sow, M., Camus, L., et al., In the darkness of the polar night, scallops keep on a steady rhythm, Sci. Rep., 2016, vol. 6, p. 32435. https://doi.org/10.1038/srep32435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Trusevich, V.V., Gaiskii, P.V., and Kuz’min, K.A., Automated biomonitoring of the aquatic environment using the responses of bivalves, Morsk. Gidrofiz. Zh., 2010, no. 3, pp. 75–83.

  29. Trusevich, V.V., Gaiskii, P.V., Kuz’min, K.A., and Mishurov, V.Zh., Biomarkers of behavioral responses of the Black Sea mussel for automated monitoring of the aquatic environment, Sist. Kontr. Okruzh. Sredy, 2015, no. 1 (21), pp. 13–18.

  30. de Zwaan, A. and Wijsman, T.C.M., A. Review: anaerobic metabolism in Bivalvia (Mollusca), Charact. Anaerobic Metab., 1976, vol. 56B, pp. 313–324.

    Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research and the city of Sevastopol, project no. 18-45-920061.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Trusevich.

Additional information

Translated by D. Martynova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trusevich, V.V., Kuz’min, K.A., Mishurov, V.Z. et al. Features of Behavioral Responses of the Mediterranean Mussel in Its Natural Habitat of the Black Sea. Inland Water Biol 14, 10–19 (2021). https://doi.org/10.1134/S1995082921010132

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995082921010132

Keywords:

Navigation