Skip to main content
Log in

On the accuracy of numerical simulation of the boundary layer separation on a finite-width wedge

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

This work is devoted to the validation of modern differential models of turbulence for the calculation of separation in a supersonic flow around the compression wedge. Use is made of the data of experiments for the 25° wedge made by A.A. Zheltovodov at the Khristianovich Institute of Theoretical and Applied Mechanics (ITAM), Siberian Branch (SB), Russian Academy of Sciences (RAS). These data are compared to the results of the three-dimensional and two-dimensional calculations by the use of several differential models of turbulence. A modification of the SST model is proposed that yields an improvement in the quality of the description of the separation zone. The three-dimensional structure of the separation on the wedge is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. S. Settles and L. J. Dodson, “Supersonic and hypersonic shock/boundary layer interaction database,” AIAA J. 32, 1377–1383 (1994).

    Article  Google Scholar 

  2. A. A. Zheltovodov, “Shock waves/turbulent boundary-layer interactions–fundamental studies and applications,” AIAA Paper No. 96-1977 (1996).

    Google Scholar 

  3. M. S. Loginov, N. F. Adams, and A. A. Zheltovodov, “Large-eddy simulation of shock-wave/turbulent-boundary-layer interaction,” J. Fluid Mech. 565, 135–169 (2006).

    Article  MATH  Google Scholar 

  4. ANSYS 14.5 Capabilities Brochure (ANSYS Inc., 2013).

  5. I. A. Brailko, V. E. Makarov, Yu. P. Fedorchenko, and V. A. Shorstov, “COBRA program complex, v2.5,” State Registration Certificate of Software No. 2010613209 (2010).

    Google Scholar 

  6. S. M. Bosnyakov, V. V. Vlasenko, M. F. Engulatova, N. A. Zlenko, S. V. Matiash, and S. V. Mikhaylov, “EWT program complex,” State Registration Certificate of Software No. 2008610227 (2008).

    Google Scholar 

  7. D. D. Knight and A. A. Zheltovodov, “Ideal-gas shock wave–turbulent boundary-layer interactions (STBLIs) in supersonic flows and their modeling: two-dimensional interactions,” in Shock Wave Boundary-Layer Interactions, Ed. by H. Babinsky and J. Harvey (Cambridge Univ. Press, New York, 2011), pp. 137–201.

    Chapter  Google Scholar 

  8. W. W. Liou, G. Huang, and T. H. Shih, “Turbulence model assessment for shock-wave/turbulent-boundarylayer interaction in transonic and supersonic flows,” Comput. Fluids 29, 275–299 (2000).

    Article  MATH  Google Scholar 

  9. I. A. Bedarev and N. N. Fedorova, “Investigation of factors affecting the quality of prediction of turbulent separated flows,” Vychisl. Tekhnol. 4 (1), 14–32 (1999).

    MathSciNet  MATH  Google Scholar 

  10. K. Sinha, K. Manesh, and G. V. Candler, “Modeling the effect of shock unsteadiness in shock/turbulent boundary-layer interactions,” AIAA J. 43, 586–594 (2005).

    Article  Google Scholar 

  11. A. A. Zheltovodov, “Analysis of properties of two-dimensional separated flows with supersonic velocities,” in Studies of Near-Wall Flows of Viscous Gas, Ed. by N. N. Yanenko (Novosibirsk, 1979), pp. 59–94 [in Russian].

    Google Scholar 

  12. A. A. Zheltovodov, E. K. Shilein, and V. N. Yakovlev, “Development of a turbulent boundary layer during combined interaction with compressed discontinuities and rarefraction waves,” Preprint No. 28 (Inst. Theor. Appl. Mech., Novosibirsk, 1983).

    Google Scholar 

  13. A. A. Zheltovodov and V. N. Yakovlev, “Stages of development, gas dynamic structure and turbulence characteristics of turbulent compressible separated flows in the vicinity of 2-D obstacles,” Preprint No. 27 (Inst. Theor. Appl. Mech., Novosibirsk, 1986).

    Google Scholar 

  14. D. C. Wilcox, Turbulence Modeling for CFD, 3rd ed. (DCW Industries, 2006).

    Google Scholar 

  15. E. V. Kazhan, “Stability improvement of Godunom-Kolgan-Rodionov TVD scheme by a local implicit smoother,” TsAGI Sci. J. 43, 787–812 (2012).

    Article  Google Scholar 

  16. V. V. Vlasenko, “On mathematical approach and principles of numerical methods construction for application package EWT-TsAGI,” Tr. TsAGI, No. 2671, 20–85 (2007).

    Google Scholar 

  17. P. R. Spalart and S. R. Allmaras, “A one-equation turbulence model for aerodynamic flows,” AIAA Paper No. 92-0439 (1992).

    Google Scholar 

  18. T. J. Coakley, “Turbulence modelling methods for the compressible Navier-Stokes equations,” AIAA Paper No. 83-1693 (1983).

    Google Scholar 

  19. T. Coakley and T. Hsieh, “Comparison between implicit and hybrid methods for the calculation of steady and unsteady inlet flows,” AIAA Paper No. 85-1125 (1985).

    Google Scholar 

  20. Practical Aspects of Solving Problems of External and Internal Aerodynamics Using ZEUS Technology in a Pachage of EWT-TsAGI, Collection of Articles, Tr. TsAGI, No. 2735 (2015).

  21. F. R. Menter, “Two-equation eddy-viscosity turbulence models for engineering applications,” AIAA J. 32, 269–289 (1994).

    Article  Google Scholar 

  22. V. S. Demyanenko and A. A. Zheltovodov, “Experimental investigations of turbulent boundary layer breakaway in the vicinity of stair,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 5, 73–80 (1977).

    Google Scholar 

  23. G. N. Abramovich, Applied Gas Dynamics, 5th ed. (Nauka, Moscow, 1991), vol. 1 [in Russian].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Bosnyakov.

Additional information

Original Russian Text © S.M. Bosnyakov, A.A. Babulin, V.V. Vlasenko, M.F. Engulatova, S.V. Matyash, S.V. Mikhaylov, 2015, published in Matematicheskoe Modelirovanie, 2015, Vol. 27, No. 10, pp. 32–46.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bosnyakov, S.M., Babulin, A.A., Vlasenko, V.V. et al. On the accuracy of numerical simulation of the boundary layer separation on a finite-width wedge. Math Models Comput Simul 8, 238–248 (2016). https://doi.org/10.1134/S2070048216030042

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048216030042

Keywords

Navigation