Skip to main content
Log in

Predictive Modeling of Mass-Transfer of Plant Using an Algorithm of Alternating Conditional Expectations

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

The problem of predictive modeling under condition of the nonlinearity of the mass−transfer plant (MTP) based on the experimental data is considered. To analyze the structural identifiability of the process under study and identify factors that affect the accuracy of the structural identifiability index with an unknown model structure, a technique based on an alternating conditional expectation (ACE) algorithm with a threshold value for the structural identifiability index of the MTP model is proposed. The threshold value of the structural identifiability index is determined based on the rigorous model of the plant, i.e., taking into account the physicochemical characteristics of the MTP. The proposed approach is illustrated using synthetic data and experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. M. J. Olanrewaju, B. Huang, and A. Afacan, “Online composition estimation and experiment validation of distillation processes with switching dynamics,” Chem. Eng. Sci. 65 (5), 1597–1608 (2010).

    Article  Google Scholar 

  2. T. Chatterjee and D. N. Saraf, “On-line estimation of product properties for crude distillation units,” J. Process Control 14, 61–77 (2004).

    Article  Google Scholar 

  3. M. Kuhn and K. Johnson, Applied Predictive Modeling (Springer, New York, 2013).

    Book  Google Scholar 

  4. G. B. Digo, N. B. Digo, A. V. Kozlov, S. A. Samotylova, and A. Yu. Torgashov, “Structural and parametric identification of soft sensors models for process plants based on robust regression and information criteria,” Autom. Remote Control 78 (4), 724–731 (2017).

    Article  Google Scholar 

  5. E. Walter and L. Pronzato, “On the identifiability and distinguishability of nonlinear parametric models,” Math. Comput. Simul. 42, 125–134 (1996).

    Article  Google Scholar 

  6. C. Cobelli and J. J. Distefano, “Parameter and structural identifiability concepts and ambiquities: A critical review and analysis,” Am. Physiol. Soc. 239 (1), 7–24 (1980).

    Google Scholar 

  7. M. J. Chappell and K. R. Godfrey, “Structural identifiability of the parameters of a nonlinear batch reactor model,” Math. Biosci. 108, 241–251 (1992).

    Article  MathSciNet  Google Scholar 

  8. R. Bellman and K. J. Astrom, “On structural identifiability,” Math. Biosci. 7 (3–4), 329–339 (1970).

    Article  Google Scholar 

  9. N. Meshkat, “Identifiable reparametrizations of linear compartment models,” Symbolic Comput. 63, 46–67 (2014).

    Article  MathSciNet  Google Scholar 

  10. S. I. Kabanikhin, D. A. Voronov, A. A. Grodz, and O. I. Krivorotko, “Identifiability of mathematical models in medical biology,” Russ. J. Genet.: Appl. Res. 6, 838–844 (2016).

    Article  Google Scholar 

  11. M. J. Chappell, K. R. Godfrey, and S. Vajda, “Global identifiability of the parameters of nonlinear systems with specified inputs: A comparison of methods,” Math. Biosci. 102 (1), 41–73 (1990).

    Article  Google Scholar 

  12. S. Vajda, H. Rabitz, E. Walter, and Y. Lecourtier, “Qualitative and quantitative identifiability analysis of nonlinear chemical kinetic models,” Chem. Eng. Commun. 83, 191–219 (1989).

    Article  Google Scholar 

  13. A. Sedoglavic, “A probabilistic algorithm to test local algebraic observability in polynomial time,” Symbolic Comput. 33, 735–755 (2002).

    Article  MathSciNet  Google Scholar 

  14. R. Brown, “Compartmental system analysis: State of the art,” IEEE Trans. Biomed. Eng. 27(1), 1–38 (1980).

    Article  Google Scholar 

  15. L. Breiman and J. Friedman, “Estimating optional transformations for multiple regression and correlation,” J. Am. Stat. Assoc. 80, 580–598 (1985).

    Article  Google Scholar 

  16. C. D. Holland, Fundamentals of Multicomponent Distillation (McGraw-Hill Book Company, New York, 1981).

    Google Scholar 

  17. D. Wang and M. Murphy, “Estimating optimal transformations for multiple regression using the ACE algorithm,” J. Data Sci. 2, 329–346 (2004).

    Google Scholar 

  18. I. S. Mozharovskii, “A method for constructing a nonparametric model based on the ACE algorithm,” in XXXII International Scientific Conference Mathematical Methods in Engineering and Technology MMTT-32 (2019), Vol. 9, pp. 39–43.

Download references

Funding

This work was partially supported by the Russian Foundation for Basic Research (project no. 17-07-00235 A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Samotylova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mozharovsky, I.S., Samotylova, S.A. & Torgashov, A.Y. Predictive Modeling of Mass-Transfer of Plant Using an Algorithm of Alternating Conditional Expectations. Math Models Comput Simul 12, 915–925 (2020). https://doi.org/10.1134/S2070048220060137

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048220060137

Keywords:

Navigation