Skip to main content
Log in

Alkaline-Modified Activated Carbons for Removing Hydrogen Sulfide from Air via Sorption and Catalytic Oxidation: Studying the Effect of Thermal Treatment on the Properties of Materials

  • CATALYSIS AND ENVIRONMENTAL PROTECTION
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

Modified carbon materials are prepared via the incipient wetness impregnation of activated carbon with a sodium hydroxide solution followed by thermal treatment in air at moderate temperatures (60–200°C). The prepared samples are tested for their capacity to remove hydrogen sulfide from air via catalytic sorption. The effect of the temperature of thermal treatment (activation) on the dynamic H2S sorption capacity of the modified carbon materials is highlighted. By modifying activated carbons via incipient wetness impregnation with aqueous NaOH, followed by thermal treatment in air at 200°C, it is possible to increase the dynamic sorption capacity of carbon materials for H2S by a factor of more than 8. The results from this study can be used in developing new materials for removing hydrogen sulfide from air on the basis of commercially available types of activated carbons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Active Carbon, Bansal, R.C., Donnet, J.B., and Stoeckli, F., Eds., New York: Marcel Dekker, 1988.

    Google Scholar 

  2. Radovic, L.R. and Sudhakar, C., in Introduction to Carbon Technologies, Marsh, H., Heintz, E.A., and Rodriguez-Reinoso, F., Eds., Alicante: University of Alicante, 1997, pp. 103–165.

    Google Scholar 

  3. Boehm, H.P., Carbon, 1994, vol. 32, no. 5, p. 759–769.

    Article  CAS  Google Scholar 

  4. Hedden, K., Humber, L., and Rao, B.R., VDI-Ber., 1976, no.253, pp. 37–42.

  5. Bagreev, A., Adib, F., and Bandosz, T.J., Carbon, 2001, vol. 39, no. 12, pp. 1897–1905.

    Article  CAS  Google Scholar 

  6. Steijns, M. and Mars, P., Ind. Eng. Chem. Prod. Res. Dev., 1977, vol. 16, no. 1, pp. 35–41.

    Article  CAS  Google Scholar 

  7. Adib, F., Bagreev, A., and Bandosz, T.J., Langmuir, 2000, vol. 16, no. 4, pp. 1980–1986.

    Article  CAS  Google Scholar 

  8. Bandosz, T.J., Bagreev, A., Adib, F., and Turk, A., Environ. Sci. Technol., 2000, vol. 34, no. 6, pp. 1069–1074.

    Article  CAS  Google Scholar 

  9. Adib, F., Bagreev, A., and Bandosz, T.J., Environ. Sci. Technol., 2000, vol. 34, no. 4, pp. 686–692.

    Article  CAS  Google Scholar 

  10. Adib, F., Bagreev, A., and Bandosz, T.J., J. Colloid Interface Sci., 1999, vol. 216, no. 2, pp. 360–369.

    Article  CAS  Google Scholar 

  11. Menezes, R.L.C.B., Moura, K.O., de Lucena, S.M.P., Azevedo, D.C.S., and Bastos-Neto, M., Ind. Eng. Chem. Res., 2018, vol. 57, no. 6, pp. 2248–2257.

    Article  CAS  Google Scholar 

  12. Bagreev, A. and Bandosz, T.J., Ind. Eng. Chem. Res., 2002, vol. 41, no. 4, pp. 672–679.

    Article  CAS  Google Scholar 

  13. Sitthikhankaew, R., Chadwick, D., Assabumrungrat, S., and Laosiripojana, N., Chem. Eng. Commun., 2014, vol. 201, no. 2, pp. 257–271.

    Article  CAS  Google Scholar 

  14. Chiang, H.-L., Tsai, J.-H., Tsai, C.-L., and Hsu, Y.-C., Sep. Sci. Technol., 2000, vol. 35, no. 6, pp. 903–918.

    Article  CAS  Google Scholar 

  15. Sitthikhankaew, R., Chadwick, D., Assabumrungrat, S., and Laosiripojana, N., Fuel Process. Technol., 2014, vol. 124, pp. 249–257.

    Article  CAS  Google Scholar 

  16. Przepiórski, J., Yoshida, S., and Oya, A., Carbon, 1999, vol. 37, no. 12, pp. 1881–1890.

    Article  Google Scholar 

  17. Ismagilov, Z.R., Khairulin, S.R., Nevedrov, A.V., Papin, A.V., and Zhbyr’, E.V., Vestn. Kuzbasskogo Gos. Tekh. Univ., 2013, no. 1, pp. 87–92.

  18. ASTM (International Standard) D6646-03: Test Method for Determination of the Accelerated Hydrogen Sulfide Breakthrough Capacity of Granular and Pelletized Activated Carbon, 2014.

  19. Shang, G., Liu, L., Chen, P., Shen, G., and Li, Q., J. Air Waste Manage. Assoc., 2016, vol. 66, no. 5, pp. 439–445.

    Article  CAS  Google Scholar 

  20. Maltseva, N.V., Golovin, V.A., Chikunova, Yu.O., and Gribov, E.N., Elektrokhimiya, 2018, vol. 54, no. 5, pp. 489–496.

    Google Scholar 

  21. Demir-Cakan, R., Morcrette, M., Nouar, F., Davoisne, C., Devic, T., Gonbeau, D., Dominko, R., Serre, C., Férey, G., and Tarascon, J.-M., J. Am. Chem. Soc., 2011, vol. 133, no. 40, pp. 16 154–16 160.

    Article  Google Scholar 

  22. Appay, M.-D., Manoli, J.-M., Potvin, C., Muhler, M., Wild, U., Pozdnyakova, O., and Paál, Z., J. Catal., 2004, vol. 222, no. 2, pp. 419–428.

    Article  CAS  Google Scholar 

  23. Wu, Z., Jin, R., Wang, H., and Liu, Y., Catal. Commun., 2009, vol. 10, no. 6, pp. 935–939.

    Article  CAS  Google Scholar 

  24. Karthe, S., Szargan, R., and Suoninen, E., Appl. Surf. Sci., 1993, vol. 72, no. 2, pp. 157–170.

    Article  CAS  Google Scholar 

  25. Mazgarov, A.M. and Kornetova, O.M., Tekhnologii ochistki poputnogo neftyanogo gaza ot serovodoroda (Technology for the Purification of Associated Petroleum Gas from Hydrogen Sulfide), Kazan: Kazan. Gos. Univ., 2015.

  26. Agaev, G.A., Nasteka, V.I., and Seidov, Z.D., Okislitel’nye protsessy ochistki sernistykh prirodnykh gazov i uglevodorodnykh kondensatov (Oxidative Processes for the Purification of Sour Natural Gases and Hydrocarbon Condensates), Moscow: Nedra, 1996.

Download references

ACKNOWLEDGMENTS

We are grateful to A. M. Tsapina and A. A. Saraev for X-ray photoelectron spectroscopy measurements.

Funding

This work was performed as part of the state taks for the Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, project no. АААА-А17-117041710077-4.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. E. Barkovskii, A. I. Lysikov, J. V. Veselovskaya, N. V. Maltseva or A. G. Okunev.

Additional information

Translated by A. Kukharuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barkovskii, I.E., Lysikov, A.I., Veselovskaya, J.V. et al. Alkaline-Modified Activated Carbons for Removing Hydrogen Sulfide from Air via Sorption and Catalytic Oxidation: Studying the Effect of Thermal Treatment on the Properties of Materials. Catal. Ind. 11, 335–341 (2019). https://doi.org/10.1134/S2070050419040020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050419040020

Keywords:

Navigation