Skip to main content
Log in

Catalytic Co-Combustion of Peat and Anthracite in a Fluidized Bed

  • ENGINEERING PROBLEMS. OPERATION AND PRODUCTION
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

The catalytic combustion of peat, anthracite, and their mixture in a ratio of 40 : 60 wt % was studied. The addition of peat with a high yield of volatiles to anthracite increased the degree of burnout of the mixture. When the commercial aluminum-copper-chromium oxide catalyst IK-12-70 was used (bed height 1 m, process temperature 700–750°C, particle size of solid fuel less than 1.25 mm), the degree of burnout was 98.2% (peat), 50.9% (anthracite), and 74.2% (peat–anthracite mixture). For large particles of a shaped peat–anthracite mixture with an equivalent diameter of 11.6–18.6 mm, burnout in the upper part of the fluidized bed of the catalyst was 80.5%. The degree of burnout of large particles fed into the lower part of the fluidized bed was evaluated taking into account the degree of burnout of small particles that passed the bed. When large particles of the shaped peat–anthracite mixture were fed, burnout reached at least 95% at a temperature of 700–750°C and a catalyst bed height of 1 m. To avoid accumulation of ash particles in the fluidized bed, the particle size of peat and anthracite in the shaped fuel should not exceed 1–1.5 mm when using a catalyst with a particle size of 2 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Parmon, V.N., Gruzdkov, Yu.A., Burdukov, A.P., Belyaev, L.S., Kler, A.M., Koshelev, A.A., Marchenko, O.V., Sutyrina, O.B., and Tyurina, E.A., Ross. Khim. Zh., 1994, vol. 38, no. 3, pp. 40–55.

    Google Scholar 

  2. Alkhasov, A.B., Vozobnovlyaemaya energetika (Renewable Energy), Moscow: Fizmatlit, 2010.

  3. Pugach, L.I., Serant, F.A., and Serant, D.F., Netraditsionnaya energetika – vozobnovlyaemye istochniki, ispol’zovanie biomassy, termokhimicheskaya podgotovka, ekologicheskaya bezopasnost’: Ucheb. posobie (Unconventional Energy: Renewable Sources, Biomass Utilization, Thermochemical Preparation, and Environmental Safety. Textbook), Novosibirsk: Novosib. Gos. Tekhn. Univ., 2006.

  4. Elistratov, V.V., Vozobnovlyaemaya energetika (Renewable Energy), Saint-Petersburg: S.-Peterb. Polytekhn. Univ., 2011.

  5. Energosberezhenie i vozobnovlyaemye istochniki energii. Uchebno-metodicheskoe posobie (Energy Saving and Renewable Energy Sources. Study Guide), Kundas, S.P., Ed., Minsk: Sakharov Mezhdunar. Gos. Ekol. Univ., 2011.

    Google Scholar 

  6. Potentsial i vozmozhnosti ispol’zovaniya torfa (Potentiality and Application Possibilities of Peat), Moscow: NP “Rostorf”, 2014. http://rostorf.ru/files/prezentaciya_ universal.pdf. Cited October 7, 2019.

  7. Tcvetkov, P.S., Mires Peat, 2017, vol. 19, pp. 1–12. http://www.mires-and-peat.net/media/map19/map_ 19_14.pdf. Cited October 7, 2019.

  8. Zhovmir, N.M., Geletukha, G.G., Zheleznaya, T.A., and Slenkin, M.V., Prom. Teplotekh., 2006, vol. 28, no. 2, pp. 75–85.

    CAS  Google Scholar 

  9. Shchudlo, T.S., Dunaevskaya, N.I., Bestsennyi, I.V., and Bondzik, D.L., Abstract of Papers, Trudy VIII Vserossiiskoi konferentsii s mezhdunarodnym uchastiem “Gorenie Tverdogo Topliva” (Proc. VIII All-Russian Conference with International Participation “Combustion of Solid Fuel”), Novosibirsk, 2012, pp. 111.1–111.8. http:// www.itp.nsc.ru/conferences/gtt8/files/111Shchudlo.pdf. Cited October 7, 2019.

  10. Mikhalev, A.V., Fluidized bed hydrodynamics and its effect on the efficiency and environmental compatibility of the anthracite culm and biograins co-combustion process, Cand. Sci. (Eng.) Dissertation, Tambov: Tambov State Techn. Univ., 2007.

  11. Is’emin, R.L., Konyakhin, V.V., Kuz’min, S.N., Mikhalev, A.V., Zorin, A.T., and Budkova, E.V., Energ. Elektrif., 2006, no. 9, pp. 45–51.

  12. Kirsanov, Yu.I., Papers presented at Vserossiiskoi molodezhnoi konferentsii “Ekologicheskie problemy promyshlenno razvitykh i resursodobyvayushchikh regionov: puti resheniya” (All-Russian Research and Practice Conference of Young Scientists “Environmental Problems of Industrial and Resource-Producing Regions: Ways of Solution”), Kemerovo, December 22, 2016; report no. 20.

  13. Khodakov, Yu.S., Oksidy azota i teploenergetika (Nitrogen Oxides and Heat Power Industry), Moscow: EST-M, 2001.

  14. Oka, S.N., Fluidized Bed Combustion, New York: Marcel Dekker, 2004.

    Google Scholar 

  15. Belousov, V.N., Smorodin, S.N., and Smirnova, O.S., Toplivo i teoriya goreniya. Uchebnoe posobie (Fuel and Combustion Theory. Textbook), part I: Toplivo (Fuel), Saint-Petersburg: SPbGTURP, 2011.

  16. Teplovoi raschet kotlov (Normativnyi metod) (Thermal Design of Boilers. Normative Method), Kagan, G.M., Ed., Saint-Petersburg: NPO TsKTI, 1998.

  17. Mikhailov, A.V., Zap. Gorn. Inst., 2016, vol. 220, pp. 538–544.

    Google Scholar 

  18. Boreskov, G.K., Geterogennyi kataliz (Heterogeneous Catalysis), Moscow: Nauka, 1986.

  19. Parmon, V.N., Ismagilov, Z.R., Kirillov, V.A., and Simonov, A.D., Katal. Prom-sti, 2002, no. 3, pp. 20–29.

  20. Parmon, V.N., Simonov, A.D., Sadykov, V.A., and Tikhov, S.F., Combust., Explos. Shock Waves, 2015, vol. 51, no. 2, pp. 143–150.

    Article  Google Scholar 

  21. Simonov, A.D., Fedorov, I.A., Dubinin, Yu.V., Yazykov, N.A., Yakovlev, V.A., and Parmon, V.N., Catal. Ind., 2013, vol. 5, no. 1, pp. 42–49.

    Article  Google Scholar 

  22. Dubinin, Yu.V., Simonov, A.D., Yazykov, N.A., and Yakovlev, V.A., Catal. Ind., 2015, vol. 7, no. 4, pp. 314–320.

    Article  Google Scholar 

  23. Yazykov, N.A., Dubinin, Yu.V., Simonov, A.D., Reshetnikov, S.I., and Yakovlev, V.A., Chem. Eng. J., 2016, vol. 283, pp. 649–655.

    Article  CAS  Google Scholar 

  24. Chibisova, N.V., Praktikum po ekologicheskoi khimii (Laboratory Manual on Environmental Chemistry), Kaliningrad: Kaliningr. Gos. Univ., 1999.

  25. Yazykov, N.A., Simonov, A.D., Aflyatunov, A.S., Dubinin, Yu.V., Selishcheva, S.A., Yakovlev, V.A., and Stepanenko, A.I., Chem. Sustainable Dev., 2017, vol. 25, no. 3, pp. 313–321.

    Google Scholar 

  26. Sovremennye podkhody k issledovaniyu i opisaniyu protsessov sushki poristykh tel (Contemporary Approaches to the Study and Description of Drying Processes for Porous Bodies), Parmon, V.N, Ed., Novosibirsk: Sib. Otd. Ross. Akad. Nauk, 2001.

  27. Zyryanov, V.V. and Zyryanov, D.V., Zola unosa – tekhnogennoe syr’e (Fly Ash as Technogenic Raw Materials), Moscow: IPTs Maska, 2009.

  28. Manovica, V., Gruborb, B., and Loncarevic, D., Chem. Eng. Sci., 2006, vol. 61, no. 5, pp. 1676–1685.

    Article  Google Scholar 

  29. Vereshchagin, S.N., Kondratenko, E.V., Rabchevskii, E.V., Anshits, N.N., Solov’ev, L.A., and Anshits, A.G., Kinet. Catal., 2012, vol. 53, no. 4, pp. 449–455.

    Article  CAS  Google Scholar 

  30. Anshits, A.G., Bajukov, O.A., Kondratenko, E.V., Anshits, N.N., Pletnev, O.N., Rabchevskii, E.V., and Solovyev, L.A., Appl. Catal., A, 2016, vol. 524, pp. 192–199.

  31. Sharonova, O.M., Anshits, N.N., Solovyov, L.A., Salanov, A.N., and Anshits, A.G., Fuel, 2013, vol. 111, pp. 332–343.

    Article  CAS  Google Scholar 

  32. Sharonova, O.M., Anshits, N.N., and Anshits, A.G., Inorg. Mater., 2013, vol. 49, no. 6, pp. 586–594.

    Article  CAS  Google Scholar 

  33. Galloway, B.D., Sasmaz, E., and Padak, B., Fuel, 2015, vol. 145, pp. 79–83.

    Article  CAS  Google Scholar 

  34. Fang, F., Li, Z.-S., Cai, N.-S., Tang, X.-Y., and Yang, H.-T., Chem. Eng. Sci., 2011, vol. 66, no. 6, pp. 1142–1149.

    Article  CAS  Google Scholar 

  35. Farahbod, F. and Farahmand, S., Fuel, 2015, vol. 156, pp. 103–109.

    Article  CAS  Google Scholar 

  36. Jia, X., Wang, Q., Cen, K., and Chen, L., Fuel, 2016, vol. 163, pp. 157–165.

    Article  CAS  Google Scholar 

  37. Ibraeva, K.T., Manaev, Yu.O., Tabakaev, R.B., Yazykov, N.A., and Zavorin, A.S., Izv. Tomsk. Politekh. Inst., Inzh. Geores., 2019, no. 1, pp. 191–200.

Download references

Funding

This study was performed under the government contract at Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences (project no. АААА-А17-117041710075-0).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. A. Yazykov, A. D. Simonov, Yu. V. Dubinin or O. O. Zaikina.

Additional information

Translated by L. Smolina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yazykov, N.A., Simonov, A.D., Dubinin, Y.V. et al. Catalytic Co-Combustion of Peat and Anthracite in a Fluidized Bed. Catal. Ind. 11, 342–348 (2019). https://doi.org/10.1134/S2070050419040111

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050419040111

Keywords:

Navigation