Skip to main content
Log in

A High-Performance Aluminum Oxide Desiccant

  • GENERAL PROBLEMS OF CATALYSIS
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

A study is performed of the effect of the conditions of preparation (the nature and amount of alkali used to hydrate a gibbsite thermal activation product and the amount of nitric acid (acid modulus value) in preparing a moldable paste) on the properties of aluminum oxide desiccants. A desiccant is obtained that has higher dynamic capacity (more than 10.0 g/100 g) at close specific surface values of around 300 m2/g and higher static capacity (20–22 g/100 g) than foreign and Russian analogues. The desiccant has high strength of more than 8.0 MPa. Such a desiccant can improve the productivity of existing adsorbers and reduce the cost of sorbent regeneration, which is of undoubted practical interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Kel'tsev, N.V., Osnovy adsorbtsionnoi tekhniki (Fundamentals of Adsorption Technology), Moscow: Khimiya, 1984.

  2. Zhdanova, N.V., Osushka prirodnykh gazov (Drying of Natural Gases), Moscow: Nedra, 1975.

  3. Ducreux, O., Lavigne, C., and Nedez, C., Air and Gas Drying with Activated Alumina. http://www.cabestisrl. com.ar/AirGas%20Drying%20Brochure.pdf. Cited July 14, 2020.

  4. RF Patent 2447929, Byull. Izobret., 2012, no. 11.

  5. Tekhnologiya katalizatorov (Technology of Catalysts), Mukhlenov, I.P., Ed., Leningrad: Khimiya, 1989.

    Google Scholar 

  6. Kruglyakov, V.Yu., Glazyrin, A.V., and Isupova, L.A., Katal Prom-sti, 2019, vol. 19, no. 2, pp. 132–141.

    CAS  Google Scholar 

  7. RF Patent 2 455 232, Byull. Izobret.,2012, no. 19.

  8. RF Patent 2 448 905, Byull. Izobret., 2012, no. 12.

  9. RF Patent 2 335 457, Byull. Izobret., 2008, no. 28.

  10. RF Patent 2 237 018, 2004.

  11. Danilevich, V.V., Isupova, L.A., Kagyrmanova, A.P., Kharina, I.V., Zyuzin, D.A., and Noskov, A.S., Kinet. Catal., 2012, vol. 53, no. 5, pp. 632–639.

    Article  CAS  Google Scholar 

  12. Kul’ko, E.V., Ivanova, A.S., Budneva, A.A., and Paukshtis, E.A., Kinet. Catal., 2005, vol. 46, no. 1, pp. 132–137.

    Article  Google Scholar 

  13. Kul’ko, E.V., Ivanova, A.S., Budneva, A.A., and Paukshtis, E.A., React. Kinet. Catal. Lett., 2006, vol. 88, no. 2, pp. 381–390.

    Article  Google Scholar 

  14. Danilevich, V.V., Isupova, L.A., Danilova, I.G., Zotov, R.A., and Ushakov, V.A., Russ. J. Appl. Chem., 2016, vol. 89, no. 3, pp. 341–351.

    Article  Google Scholar 

  15. Fleming, H.L., Stud. Surf. Sci. Catal., 1998, vol. 120, pp. 561–585.

    Article  Google Scholar 

  16. Zotov, R.A., Glazyrin, A.A., Danilevich, V.V., Kharina, I.V., Zyuzin, D.A., Volodin, A.M., and Isupova, L.A., Kinet. Catal., 2012, vol. 53, 5, pp. 570–576.

    Article  CAS  Google Scholar 

  17. Danilevich, V.V., Isupova, L.A., Paukshtis, E.A., and Ushakov, V.A., Kinet. Catal., 2014, vol. 55, no. 3, pp. 372–379.

    Article  CAS  Google Scholar 

  18. Isupova, L.A., Danilova, I.G., Danilevich, V.V., and Ushakov, V.A., Russ. J. Appl. Chem., 2017, vol. 90, no. 11, pp. 1810–1818.

    Article  CAS  Google Scholar 

  19. Reshetnikov, S.I., Livanova, A.V., Meshcheryakov, E.P., Kurzina, I.A., and Isupova, L.A., Russ. J. Appl. Chem., 2017, vol. 90, no. 11, pp. 1760–1765.

    Article  CAS  Google Scholar 

  20. Isupova, L.A., Tanashev, Yu.Yu., Kharina, I.V., Moroz, E.M., Litvak, G.S., Boldyreva, N.N., Paukshtis, E.A., Burgina, E.B., Budneva, A.A., Shmakov, A.N., Rudina, N.A., Kruglyakov, V.Yu., and Parmon, V.N., Chem. Eng. J., 2005, vol. 107, nos. 1–3, pp. 163–169.

  21. Brunauer, S., Emmett, P.H., and Teller, E., J. Am. Chem. Soc., 1938, vol. 60, no. 2, pp. 309–319.

    Article  CAS  Google Scholar 

  22. Lippens, B.C. and de Boer, J.H., J. Catal., 1965, vol. 4, no. 3, pp. 319–323.

    Article  CAS  Google Scholar 

  23. de Boer, J.H., Linsen, B.G., and Osinga, Th.J., J. Catal., 1965, vol. 4, no. 6, pp. 643–648.

    Article  CAS  Google Scholar 

  24. Zolotarskii, I.A., Voennov, L.I., Zudilina, L.Yu., Isupova, L.A., Zotov, R.A., Medvedev, D.A., Stepanov, D.A., Livanova, A.V., Meshcheryakov, E.P., and Kurzina, I.A., Catal. Ind., 2018, vol. 10, no. 1, pp. 49–56.

    Article  Google Scholar 

Download references

Funding

This work was supported by the RF Ministry of Education and Science, agreement no. 14.575.21.0139 and identifier no. RFMEFI57517X0139.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. Yu. Kruglyakov, A. V. Glazyrin, E. P. Meshcheryakov, I. A. Kurzina or L. A. Isupova.

Additional information

Translated by A. Tulyabaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kruglyakov, V.Y., Glazyrin, A.V., Meshcheryakov, E.P. et al. A High-Performance Aluminum Oxide Desiccant. Catal. Ind. 12, 169–175 (2020). https://doi.org/10.1134/S2070050420030083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050420030083

Keywords:

Navigation