Skip to main content
Log in

Reactivity of Platinum Hydrides in the Selective Hydrogenation of Acetic Acid on Pt–ReOx/TiO2 Catalysts

  • CATALYSIS IN CHEMICAL AND PETROCHEMICAL INDUSTRY
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

The interaction between hydrogen and subnanometer deposited Pt–ReOx particles active in dehydrogenation of carboxylic acids is investigated via in situ diffuse reflectance IR spectroscopy. Absorption bands of platinum hydrides are detected in the range of 2025–2043 cm−1, and their high reactivity with respect to adsorbed acetic acid is revealed. The absorption band of platinum hydride shifts toward higher frequencies and becomes more intense, due to the effect of adjacent acetates on the electron state of platinum. It is established that in a hydrogen medium the intensity of platinum hydride bands sharply increases after the adsorption of acetic acid and then gradually decreases owing to the reaction of the hydrides with surface acetates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Suknev, A., Zaikovskii, V., Kaichev, V., Paukshtis, E., Sadovskaya, E., and Bal’zhinimaev, B., J. Energy Chem., 2015, vol. 24, no. 5, pp. 646–654. https://doi.org/10.1016/j.jechem.2015.09.003

    Article  Google Scholar 

  2. Takeda, Y., Tamura, M., Nakagawa, Y., Okumura, K., and Tomishige, K., ACS Catal., 2015, vol. 5, no. 11, pp. 7034–7047. https://doi.org/10.1021/acscatal.5b01054

    Article  CAS  Google Scholar 

  3. Dub, P.A. and Ikariya, T., ACS Catal., 2012, vol. 2, no. 8, pp. 1718–1741. https://doi.org/10.1021/cs300341g

    Article  CAS  Google Scholar 

  4. Bal’zhinimaev, B.S., Paukshtis, E.A., Suknev, A.P., and Makolkin, N.V., J. Energy Chem., 2018, vol. 27, no. 3, pp. 903–912. https://doi.org/10.1016/j.jechem.2017.07.018

    Article  Google Scholar 

  5. Tamura, M., Tokonami, K., Nakagawa, Y., and Tomi-shige, K., ACS Catal., 2016, vol. 6, no. 6, pp. 3600–3609. https://doi.org/10.1021/acscatal.6b00400

    Article  CAS  Google Scholar 

  6. Eley, D.D., Moran, D.M., and Rochester, C.H., Trans. Faraday Soc., 1968, vol. 64, pp. 2168–2180. https://doi.org/10.1039/TF9686402168

    Article  CAS  Google Scholar 

  7. Paleček, D., Tek, G., Lan, J., Iannuzzi, M., and Hamm, P., Chem. Phys. Lett., 2018, vol. 9, no. 6, pp. 1254–1259. https://doi.org/10.1021/acs.jpclett.8b00310

    Article  CAS  Google Scholar 

  8. Carosso, M., Vottero, E., Lazzarini, A., Morandi, S., Manzoli, M., Lomachenko, K.A., Ruiz, M.J., Pellegrini, R., Lamberti, C., Piovano, A., and Groppo, E., ACS Catal., 2019, vol. 9, no. 8, pp. 7124–7136. https://doi.org/10.1021/acscatal.9b02079

    Article  CAS  Google Scholar 

  9. Primet, M., Basset, J.M., Mathieu, M.V., and Prettre, M., J. Catal., 1973, vol. 28, no. 3, pp. 368–375. https://doi.org/10.1016/0021-9517(73)90129-2

    Article  CAS  Google Scholar 

  10. Dixon, L.T., Barth, R., and Gryder, J.W., J. Catal., 1975, vol. 37, no. 2, pp. 368–375. https://doi.org/10.1016/0021-9517(75)90171-2

    Article  CAS  Google Scholar 

  11. Nanbu, N., Kitamura, F., Ohsaka, T., and Tokuda, K., J. Electroanal. Chem., 2000, vol. 485, no. 2, pp. 128–134. https://doi.org/10.1016/S0022-0728(00)00104-2

    Article  CAS  Google Scholar 

  12. Szilágyi, T., J. Catal., 1990, vol. 121, no. 2, pp. 223–227. https://doi.org/10.1016/0021-9517(90)90232-9

    Article  Google Scholar 

  13. Ly, B.K., Tapin, B., Epron, F., Pinel, C., Especel, C., and Besson, M., Catal. Today, 2020, vol. 355, pp. 75–83. https://doi.org/10.1016/j.cattod.2019.03.024

    Article  CAS  Google Scholar 

  14. Scofield, J.H., J. Electron Spectrosc. Relat. Phenom., 1976, vol. 8, no. 2, pp. 129–137. https://doi.org/10.1016/0368-2048(76)80015-1

    Article  CAS  Google Scholar 

  15. Steinrück, H.-P., Pesty, F., Zhang, L., and Madey, T.E., Phys. Rev. B, 1995, vol. 51, no. 4, pp. 2427–2439. https://doi.org/10.1103/PhysRevB.51.2427

    Article  Google Scholar 

  16. Reiche, R., Oswald, S., and Wetzig, K., Appl. Surf. Sci., 2001, vol. 179, nos. 1–4, pp. 316–323. https://doi.org/10.1016/S0169-4332(01)00300-2

  17. Chan, A.S.Y., Chen, W., Wang, H., Rowe, J.E., and Madey, T.E., J. Phys. Chem. B, 2004, vol. 108, no. 38, pp. 14 643–14 651. https://doi.org/10.1021/jp040168x

    Article  CAS  Google Scholar 

  18. Wang, H., Chan, A.S.Y., Chen, W., Kaghazchi, P., Jacob, T., and Madey, T.E., ACS Nano, 2007, vol. 1, no. 5, pp. 449–455. https://doi.org/10.1021/nn700238r

    Article  CAS  PubMed  Google Scholar 

  19. Hydrogen Effects in Catalysis: Fundamentals and Practical Applications, Paál, Z. and Menon, P.G., Eds., New York: Marcel Dekker, 1988.

    Google Scholar 

  20. Kaesz, H.D. and Saillant, R.B., Chem. Rev., 1972, vol. 72, no. 3, pp. 231–281. https://doi.org/10.1021/cr60277a003

    Article  CAS  Google Scholar 

  21. Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds, New York: Wiley, 1986, pp. 232–233.

    Google Scholar 

  22. Liao, L.-F., Lien, C.-F., and Lin, J.-L., Phys. Chem. Chem. Phys., 2001, vol. 3, no. 17, pp. 3831–3837. https://doi.org/10.1039/B103419G

    Article  CAS  Google Scholar 

  23. Rachmady, W. and Vannice, M.A., J. Catal., 2002, vol. 207, no. 2, pp. 317–330. https://doi.org/10.1006/jcat.2002.3556

    Article  CAS  Google Scholar 

  24. Mager-Maury, C., Bonnard, G., Chizallet, C., Sautet, P., Raybaud, P., ChemCatChem, 2011, vol. 3, no. 1, pp. 200–207. https://doi.org/10.1002/cctc.201000324

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to V.V. Kaichev and A.A. Saraev for counducting the XPS studies of our catalysts.

Funding

The reported study was funded by the Russian Foundation for Basic Research and the National Research Foundation of Korea according to research project no. 19-53-51002. This work was supported by the National Research Foundation of Korea (NRF) funded by the Korea government (MSIT) (grant no. NRF-2019K2A9A1A06098926).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. V. Makolkin, H. U. Kim, E. A. Paukshtis or J. Jae.

Additional information

Translated by E. Glushachenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makolkin, N.V., Kim, H.U., Paukshtis, E.A. et al. Reactivity of Platinum Hydrides in the Selective Hydrogenation of Acetic Acid on Pt–ReOx/TiO2 Catalysts. Catal. Ind. 12, 316–322 (2020). https://doi.org/10.1134/S207005042004011X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207005042004011X

Keywords:

Navigation