Skip to main content
Log in

Modelling of the Boronizing Kinetics of Vanadis 6 Steel by the Integral Diffusion Model

  • NEW SUBSTANCES, MATERIALS, AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

In this work, the Vanadis 6 steel was subjected to the solid boronizing treatment in the range of 950–1050°C, and for the durations between 0.75 and 10 h. The cross-sectional microstructures of boronized samples were investigated by scanning electron microscope, and the crystalline nature of phases present inside the boride layers was analysed by X-ray diffraction analysis. A kinetic approach basing on the integral diffusion model has been proposed for investigating the diffusion phenomena during the boronizing of examined steel. An adequate change of variables made in the derived system of differential algebraic equations (DAE) was employed to assess the values of boron diffusion coefficients in FeB and Fe2B. Boronizing within the temperature range 950–1050°C produced two-phase layers. These layers manifest less pronounced sawtooth morphology than what is typical for low-alloyed steels or for pure iron. The values of boron activation energies in FeB and Fe2B were 219.70 and 192.88 kJ mol–1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Sinha, A.K., in ASM Handbook, vol. 4: Heat Treating, Materials Park, OH: ASM Int., 1999.

    Google Scholar 

  2. Kulka, M., in Current Trends in Boriding. Engineering Materials, Cham: Springer, 2019.

    Book  Google Scholar 

  3. Carbucicchio, M. and Palombarini, G., J. Mater. Sci. Lett., 1987, vol. 6, p. 1147.

    Article  CAS  Google Scholar 

  4. Hernández-Sánchez, E., Domínguez-Galicia, Y.M., Orozco-Álvarez, C., Carrera-Espinoza, R., Herrera-Hernández, H., and Velázquez, J.C., Adv. Mater. Sci. Eng., 2014, vol. 2014, p. 249174.

    Article  Google Scholar 

  5. Campos-Silva, I., Ortiz-Domínguez, M., Cimenoglu, H., Escobar-Galindo, R., Keddam, M., ElíasEspinosa, M., and López-Perrusquia, N., Surf. Eng., 2011, vol. 27, no. 3, p. 189.

    Article  CAS  Google Scholar 

  6. Mebarek, B., Keddam, M., and Aboshighiba, H., Rev. Sci. Technol. Inf., 2018, vol. 23, no. 5, p. 29.

    Google Scholar 

  7. Keddam, M. and Kulka, M., J. Min. Metall., Sect. B, 2018, vol. 54, no. 3, p. 361.

    CAS  Google Scholar 

  8. Brakman, C.M., Gommers, A.W.J., and Mittemeijer, E.J., J. Mater. Res., 1989, vol. 4, no. 6, p. 1354.

    Article  CAS  Google Scholar 

  9. Yu, L., Chen, X., Khor, K., and Sundararajan, G., Acta Mater., 2005, vol. 53, p. 2361.

    Article  CAS  Google Scholar 

  10. Campos, I., Torres, R., Bautista, O., Ramirez, G., and Zuniga, L., Appl. Surf. Sci., 2006, vol. 252, p. 2396.

    Article  CAS  Google Scholar 

  11. Campos, I., Islas, M., González, E., Ponce, P., and Ramírez, G., Surf. Coat. Technol., 2006, vol. 201, p. 2717.

    Article  CAS  Google Scholar 

  12. Campos, I., Islas, M., Ramírez, G., Villa Velázquez, C., and Mota, C., Appl. Surf. Sci., 2007, vol. 253, p. 6226.

    Article  CAS  Google Scholar 

  13. Campos-Silva, I., Tadeo-Rosas, R., Santos-Medina, H.D., and Lopez-Garcıa, C., in Encyclopedia of Iron, Steel, and Their Alloys, Colas, R. and Totten, G.E., Eds., CRC Press, 2015.

    Google Scholar 

  14. Campos-Silva, I., Flores-Jiménez, M., Bravo-Bárcenas, D., Balmori-Ramírez, H., Andraca-Adame, J., Martínez-Trinidad, J., and Meda-Campaña, J.A., Surf. Coat. Technol., 2017, vol. 309, p. 155.

    Article  CAS  Google Scholar 

  15. Nait Abdellah, Z. and Keddam, M., Mater. Technol., 2014, vol. 48, no. 2, p. 237.

    Google Scholar 

  16. Rayane, K. and Allaoui, O.‚ Defect Diffus. Forum, 2015, vol. 365, p. 194.

    Google Scholar 

  17. Türkmen, I., Yalamaç, E., and Keddam, M., Surf. Coat. Technol., 2019, vol. 377, p. 124888.

    Article  Google Scholar 

  18. Keddam, M. and Kulka, M., Prot. Met. Phys. Chem. Surf., 2018, vol. 54, p. 282.

    Article  CAS  Google Scholar 

  19. Keddam, M. and Kulka, M., Phys. Met. Metallogr., 2018, vol. 119, p. 842.

    Article  CAS  Google Scholar 

  20. Zouzou, C. and Keddam, M., Ann. Chim. Sci. Mater., 2019, vol. 43, no. 3, p. 159.

    Article  Google Scholar 

  21. Zouzou, C. and Keddam, M., Metall. Res. Technol., 2020, vol. 117, p. 202.

    Article  CAS  Google Scholar 

  22. Keddam, M.‚ Acta Phys. Pol., A, 2018, vol. 133, no. 5, p. 1174.

    Article  CAS  Google Scholar 

  23. Sen, S., Sen, U., and Bindal, C., Surf. Coat. Technol., 2005, vol. 191, p. 274.

    Article  CAS  Google Scholar 

  24. Bartkowska, A., Bartkowski, D., Swadźba, R., Przestacki, D., and Miklaszewski, A., Int. J. Adv. Manuf. Technol., 2018, vol. 95, p. 1763.

    Article  Google Scholar 

  25. Van Rompaey, T., Hari Kumar, K.C., and Wollants, P., J. Alloys Compd., 2002, vol. 334, p. 173.

    Article  CAS  Google Scholar 

  26. Goodman, T.R., Adv. Heat Transfer, 1964, vol. 1, p. 51.

    Article  CAS  Google Scholar 

  27. Kunst, H. and Schaaber, O., Haerterei-Tech. Mitt., 1967, vol. 22, p. 1.

    CAS  Google Scholar 

  28. Uslu, I., Omert, H., Ipek, M., Celebi, F.G., Ozdemir, O., and Bindal, C., Mater. Des., 2007, vol. 28, p. 1819.

    Article  CAS  Google Scholar 

  29. Ünal, F. and Topuz, A., Mater. Test., 2016, vol. 58, no. 5, p. 418.

    Article  Google Scholar 

  30. Kayali, Y., Akcin, Y., Mertgenc, E., and Gokce, B., Prot. Met. Phys. Chem. Surf., 2017, vol. 53, no. 1, p. 127.

    Article  CAS  Google Scholar 

  31. Keddam, M., Chegroune, R., Kulka, M., Panfil, D., Ulker, S., and Taktak, S., Trans. Indian Inst. Met., 2017, vol. 70, p. 1377.

    Article  CAS  Google Scholar 

  32. Kayali, Y. and Mertgenç, E., Prot. Met. Phys. Chem. Surf., 2020, vol. 56, no. 1, p. 151.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors acknowledge that the paper is a result of the project implementation “Centre for Development and Application of Advanced Diagnostic Methods in Processing of Metallic and Non-Metallic Materials – APRODIMET”, ITMS: 26220120014, supported by the Research & Development Operational Programme funded by the ERDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Jurči.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keddam, M., Hudáková, M., Ptačinová, J. et al. Modelling of the Boronizing Kinetics of Vanadis 6 Steel by the Integral Diffusion Model. Prot Met Phys Chem Surf 58, 347–355 (2022). https://doi.org/10.1134/S207020512202006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207020512202006X

Keywords:

Navigation