Skip to main content
Log in

Change of Low-Molecular-Weight Metabolome of Alien Species Potamogeton pectinatus L. in Lake Ladoga in Comparison with Population of Native Range

  • Published:
Russian Journal of Biological Invasions Aims and scope Submit manuscript

Abstract

The issue of the formation of the compound composition of low-molecular-weight organic compounds in aquatic macrophytes, which make up their low-molecular-weight metabolism, has hardly been studied when introducing them into new habitats. The study aims to compare the component composition of the low-molecular-weight metabolome of sago pondweed (Potamogeton pectinatus L.) on the low-molecular-weight organic compounds contained in the essential oil from the invasive population in the Lake Ladoga and the populations from the native range in Astrakhan Region, Russia. Gas chromatography–mass spectrometry was the major research method. Upon the invasion of P. pectinatus into Lake Ladoga, there was a change in the content of various groups of low-molecular-weight organic compounds in the essential oil and a change in the complex of major components. Fatty acids (29.3–40.0%) and ketones (14.5–18.5%) prevailed in the low-molecular-weight metabolome of sago pondweed in the lakes of the native range. Ketones (27.4%) and aldehydes (18.1%) were the main groups in this species inhabiting Lake Ladoga. About a third of the compounds in the composition of the low-molecular-weight metabolome were specific both to the invasive population of the sago pondweed in the Lake Ladoga and to the population from the lakes of the native range. The plasticity of the metabolism of P. pectinatus allows it to adapt to a wide spectrum of abiotic conditions and different biological environments and to settle in new habitats, primarily those under anthropogenic impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Aleksandrov, V.V., Life status of specimens and cenopopulations of Potamogeton pectinatus L. in monodominant and mixed phytocenoses, Sovremennye problemy ekologii Azovo-Chernomorskogo regiona: Materialy III Mezhdunarodnoi konferentsii (Current Ecological Problems of the Azov-Black Sea Region: Proc. III Int. Conf., October 10–11, 2007), Kerch, 2008, pp. 52–60.

  2. Allelopathy: A Physiological Process with Ecological Implications, Reigosa, M.J., Pedrol, N., and González, L., Eds., Dordrecht: Springer, 2006.

  3. Aslam, F., Khaliq, A., Matloob, A., Tanveer, A., Hussain, S., and Zahir, Z.A., Allelopathy in agro-ecosystems: a critical review of wheat allelopathy-concepts and implications, Chemoecology, 2017, vol. 27, pp. 1–24. https://doi.org/10.1007/s00049-016-0225-x

    Article  CAS  Google Scholar 

  4. Bains, G., Kumar, A.S., Rudrappa, T., Alff, E., Hanson, T.E., and Bais, H.P., Native plant and microbial contributions to a negative plant–plant interaction, Plant. Physiol., 2009, vol. 151, pp. 2145–2151.

    Article  CAS  Google Scholar 

  5. Bais, H.P., Vepachedu, R., Gilroy, S., Callaway, R.M., and Vivanco, J.M., Allelopathy and exotic plant invasion: From molecules and genes to species interactions, Science, 2003, vol. 301, pp. 1377–1380.

    Article  CAS  Google Scholar 

  6. Bakeeva, L.E., Zamyatnina, V.A., Shorning, B.Yu., Aleksandrushkina, N.I., and Vanyushin, B.F., Effect of the antioxidant ionol (BHT) on growth and development of etiolated wheat seedlings: control of apoptosis, cell division, organelle ultrastructure, and plastid differentiation, Biochemistry (Moscow), 2001, vol. 66, no. 8, pp. 850–859.

    CAS  PubMed  Google Scholar 

  7. Bazarova, B.B. and Pronin, N.M., Canadian elodea in the Chivyrkuisky Bay of Lake Baikal, Geogr. Prir. Resur., 2006, no. 1, pp. 59–62.

  8. Callaway, R.M. and Ridenour, W.M., Novel weapons: invasive success and the evolution of increased competitive ability, Front. Ecol. Environ., 2004, vol. 2, pp. 436–443.

    Article  Google Scholar 

  9. Chadin, I., Volodin, V., Whiting, P., Shirshova, T., Kolegova, N., and Dinan, L., Ecdysteroid content and distribution in plants of genus Potamogeton,Biochem. Syst. Ecol., 2003, vol. 31, no. 4, pp. 407–415. https://doi.org/10.1016/s0305-1978(02)00172-2

    Article  CAS  Google Scholar 

  10. Czekanowski, J., Coefficient of racial likeness and durchschnittliche differenz, Anthropol. Anz., 1922, vol. 9, pp. 227–249.

    Google Scholar 

  11. Degterev, I.A. and Zaikov, G.E., Ionol [BHT]. Distribution in the organism, metabolism, and biological effect. II. Biological effects of ionol (survey), Pharm. Chem. J., 1985, vol. 19, no. 10, pp. 653–661.

    Article  Google Scholar 

  12. Dgebuadze, Yu., Alien species: ecological threat, Nauka Ross., 2013, no. 6, pp. 95–102.

  13. Dgebuadze, Yu.Yu., Invasions of alien species in Holarctic: some results and perspective of investigations, Russ. J. Biol. Invasions, 2014, vol. 5, pp. 61–64.

    Article  Google Scholar 

  14. Dorning, M. and Cipollini, D., Leaf and root extracts of the invasive shrub, Lonicera maackii, inhibit seed germination of three herbs with no autotoxic effects, Plant. Ecol., 2006, vol. 184, pp. 287–296.

    Article  Google Scholar 

  15. Erhard, D., Allelopathy in aquatic environments, in Allelopathy: A Physiological Process with Ecological Implications, Reigosa, M.J., Pedrol, N., and González, L., Eds., Dordrecht: Springer, 2006, pp. 433–450.

    Google Scholar 

  16. Fink, P., Ecological functions of volatile organic compounds in aquatic systems, Mar. Freshwater Behav. Physiol., 2007, vol. 40, no. 3, pp. 155–168.

    Article  CAS  Google Scholar 

  17. Fitoplankton Nizhnei Volgi. Vodokhranilishcha i nizov’e reki (Phytoplankton of the Lower Volga. Reservoirs and Downstream), Trifonov, I.S., Ed., St. Petersburg: Nauka, 2003.

    Google Scholar 

  18. Flamini, G., Natural herbicides as a safer and more environmentally friendly approach to weed control: a review of the literature since 2000, Stud. Nat. Prod. Chem., 2012, vol. 38, pp. 353–396.

    Article  CAS  Google Scholar 

  19. Gopal, B. and Goel, U., Competition and allelopathy in aquatic plant communities, Bot. Rev., 1993, vol. 59, no. 3, pp. 155–210.

    Article  Google Scholar 

  20. GOST (State Standard) 24027.2–80: Vegetative Medical Raw Materials. Methods for Determining Humidity, Ash Content, Extractive Substances and Tannins, and Essential Oils, 1980. https://meganorm.ru/Index/30/30604.htm. Accessed February 11, 2020.

  21. Gosudarstvennaya Farmakopeya SSSR (State Pharmacopoeia of the USSR), 1987, 11th ed., no. 1.

  22. Gosudarstvennyi doklad o sostoyanii prirodnykh resursov i okhrane okruzhayushchei sredy Astrakhanskoi oblasti za 2009 god (The State Report on the Status of Natural Resources and Environmental Protection in Astrakhan Region for 2009), Astrakhan, 2010.

  23. Gurevich, F.A., The role of phytoncides in inland waters, Vodn. Resur., 1978, no. 2, pp. 133–142.

  24. Hu, H. and Hong, Y., Algal-bloom control by allelopathy of aquatic macrophytes—a review, Front. Environ. Sci. Eng. China, 2008, vol. 2, no. 4, pp. 421–438.

    Article  Google Scholar 

  25. Jaccard, P., Distribution de la flore alpine dans le Bassin des Dranses et dans quelques regions voisines, Bull. Soc. Vaudoise Sci. Nat., 1901, vol. 140, pp. 241–272.

    Google Scholar 

  26. Kantrud, H.A., Sago Pondweed (Potamogeton pectinatus L.): A Literature Review, Washington, DC: Fish and Wildlife Service, 1990.

    Google Scholar 

  27. Keddy, P. and Reznicek, A.A., Great Lakes vegetation dynamics: the role of fluctuating water levels and buried seeds, J. Great Lakes Res., 1986, vol. 12, pp. 25–36.

    Article  Google Scholar 

  28. Kimura, F., Sato, M., and Kato-Noguchi, H., Allelopathy of pine litter: delivery of allelopathic substances into forest floor, J. Plant. Biol., 2015, vol. 58, pp. 61–67.

    Article  CAS  Google Scholar 

  29. Kitaev, S.P., Osnovy limnologii dlya gidrobiologov i ikhtiologov (Basics of Limnology for Hydrobiologists and Ichthyologists), Petrozavodsk: Karel. Nauchn. Tsentr Ross. Akad. Nauk, 2007.

  30. Kondrat’ev, M.N. and Larikova, Yu.S., The role of allelopathy in invasion of plant species (review), Izv. Timiryazevsk. S.-kh. Akad., 2018, no. 2, pp. 48–61.

  31. Kurashov, E.A., Barbashova, M.A., Dudakova, D.S., Kapustina, L.L., Mitrukova, G.G., Rusanov, A.G., Aleshina, D.G., Iofina, I.V., Protopopova, E.V., Rodionova, N.V., and Trifonova, M.S., Ecosystem of Lake Ladoga: current status and trends of its change in the late 20th–early 21st century, Biosphere, 2018, vol. 10, no. 2, pp. 65–121. https://doi.org/10.24855/biosfera.v10i2.439

    Article  Google Scholar 

  32. Kurashov, E.A., Krylova, J.V., Mitrukova, G.G., and Chernova, A.M., Low-molecular-weight metabolites of aquatic macrophytes growing on the territory of Russia and their role in hydroecosystems, Contemp. Probl. Ecol., 2014, vol. 7, no. 4, pp. 433–448.https://doi.org/10.1134/S1995425514040064

    Article  Google Scholar 

  33. Kurashov, E.A., Mitrukova, G.G., and Krylova, Yu.V., Interannual variability of low-molecular metabolite composition in Ceratophyllum demersum (Ceratophyllaceae) from a floodplain lake with a changeable trophic status, Contemp. Probl. Ecol., 2018, vol. 11, no. 2, pp. 179–194.https://doi.org/10.1134/S1995425518020063

    Article  Google Scholar 

  34. Lamikanra, O. and Richard, O.A., Effect of storage on some volatile aroma compounds in fresh-cut cantaloupe melon, J. Agric. Food Chem., 2002, vol. 50, pp. 4043–4047.

    Article  CAS  Google Scholar 

  35. Lara-Núñez, A., Romero-Romero, T., Ventura, J.L., Blancas, V., Anaya, A.L., and Cruz-Ortega, R., Allelochemical stress causes inhibition of growth and oxidative damage in Lycopersicon esculentum, Mill.Plant Cell Environ., 2006, vol. 29, pp. 2009–2016.

    Article  Google Scholar 

  36. Letanskaya, G.I. and Rusanov, A.G., Evaluation of the trophic status of Lake Ladoga, in Ladoga (Ladoga), St. Petersburg: Nestor-Istoriya, 2013, pp. 341–347.

    Google Scholar 

  37. Litoral’naya zona Ladozhskogo ozera (The Littoral Zone of Lake Ladoga), Kurashov, E.A., Ed., St. Petersburg: Nestor-Istoriya, 2011.

    Google Scholar 

  38. Lorenzo, P., Pazos-Malvido, E., Reigosa, M.J., and González, L., Differential responses to allelopathic compounds released by the invasive Acacia dealbata Link (Mimosaceae) indicate stimulation of its own seed, Aust. J. Bot., 2010, vol. 58, pp. 546–553.

    Article  Google Scholar 

  39. Mohamed, A.M., Quisenberry, S.S., and Moellenbeck, D.J., 6,10,14-Trimethylpentadecan-2-one: a Bermuda grass phagostimulant to fall armyworm (Lepidoptera: Noctuidae), J. Chem. Ecol., 1992, vol. 18, pp. 673–682. https://doi.org/10.1007/BF00987827

    Article  CAS  PubMed  Google Scholar 

  40. Morisita, M., Measuring of interspecific association and similarity between communities, Mem. Fac. Sci., Kyushu Univ., Ser. E: Biol., 1959, no. 3, pp. 65–80.

  41. Nakai, S., Yamada, S., and Hosomi, M., Anti-cyanobacterial fatty acids released from Myriophyllum spicatum,Hydrobiologia, 2005, vol. 543, pp. 71–78.

    Article  CAS  Google Scholar 

  42. Penning, W.E., Mjelde, M., Dudley, B., Hellsten, S., Hanganu, J., Kolada, A., Berg, M., Poikane, S., Phillips, G., Willby, N.J., and Ecke, F., Classifying aquatic macrophytes as indicators of eutrophication in Europian lakes, Aquat. Ecol., 2008, vol. 42, pp. 237–251.

    Article  CAS  Google Scholar 

  43. Petrova, N.A., Iofina, I.V., Kapustina, L.L., Kulish, T.P., Petrova, T.N., and Raspletina, G.F., Anthropogenic eutrophication of Lake Ladoga (stages of ecosystem transformation, 1975–2004), Ekol. Khim., 2005, vol. 14, no. 4, pp. 209–234.

    Google Scholar 

  44. Raspopov, I.M., Species and coenotic diversity of higher aquatic and coastal-aquatic plants in the littoral zone of Lake Ladoga, in Litoral’naya zona Ladozhskogo ozera (The Littoral Zone of Lake Ladoga), St. Petersburg: Nestor-Istoriya, 2011, pp. 52–64.

  45. Raspopov, I.M., Vysshaya vodnaya rastitel’nost’ bol’shikh ozer Severo-Zapada SSSR (Higher Aquatic Vegetation of Large Lakes of the North-West of the USSR), Leningrad: Nauka, 1985.

  46. Rudrappa, T., Bonsall, J., Gallagher, J.L., Seliskar, D.M., and Bais, H.P., Root-secreted allelochemical in the noxious weed Phragmites australis deploys a reactive oxygen species response and microtubule assembly disruption to execute rhizotoxicity, J. Chem. Ecol., 2007, vol. 33, pp. 1898–1918.

    Article  CAS  Google Scholar 

  47. Rusanov, A.G., The spatial distribution of higher aquatic vegetation of Lake Ladoga depending on natural and anthropogenic factors, in Litoral’naya zona Ladozhskogo ozera (The Littoral Zone of Lake Ladoga), St. Petersburg: Nestor-Istoriya, 2011, pp. 68–101.

  48. Rusanov, A.G., The spatial structure of the macrophyte community of Lake Ladoga and factors of its regulation, in Ladoga (Ladoga), St. Petersburg: Nestor-Istoriya, 2013, pp. 253–259.

    Google Scholar 

  49. Sager, L. and Lachavanne, J.-B., The M-NIP: a macrophyte-based nutrient index for ponds, Hydrobiologia, 2009, vol. 634, pp. 43–63.

    Article  CAS  Google Scholar 

  50. Sand-Jensen, K., Riis, T., Vestergaard, O., and Larsen, S.E., Macrophyte decline in Danish lakes and streams over the past 100 years, J. Ecol., 2000, vol. 88, pp. 1030–1040.

    Article  Google Scholar 

  51. Shao, J., Xu, Y., Wang, Z., Jiang, Y., Yu, G., Peng, X., and Li, R., Elucidating the toxicity targets of β-ionone on photosynthetic system of Microcystis aeruginosa NIES-843 (Cyanobacteria), Aquat. Toxicol., 2011, vol. 104, pp. 48–55.

    Article  CAS  Google Scholar 

  52. Sørensen, T.A., A method of establishing groups of equal amplitude in plant sociology based on similarity of species content, and its application to analyses of the vegetation on Danish commons, K. Dan. Vidensk. Selsk. Biol. Skr., 1948, vol. 5, pp. 1–34.

    Google Scholar 

  53. Stroitel’naya klimatologiya. Aktualizirovannaya redaktsiya. SNIP 23-02-99 (Construction Climatology. Updated Edition. SNIP 23-02-99), Moscow: Minstroi Ross., 2015.

  54. Sun, X., Jin, H., Zhang, L., Hu, W., Li, Y., and Xu, N., Screening and isolation of the algicidal compounds from marine green alga Ulva intestinalis,Chin. J. Ocean. Limnol., 2016, vol. 34, pp. 781–788. https://doi.org/10.1007/s00343-016-4383-z

    Article  CAS  Google Scholar 

  55. Tkachev, A.V., Issledovanie letuchikh veshchestv rastenii (Plant Volatiles Research), Novosibirsk: Ofset, 2008.

  56. Trifonova, M.S., Kurashov, E.A., and Barbashova, M.A., Biological pollution of bottom communities of the littoral zone of Lake Ladoga, Ross. Zh. Prikl. Ekol., 2018, no. 4, pp. 37–41.

  57. Uddin, M.N. and Robinson, R.W., Allelopathy and resource competition: the effects of Phragmites australis invasion in plant communities, Bot. Stud., 2017, vol. 58, p. 29. https://doi.org/10.1186/s40529-017-0183-9

    Article  PubMed  PubMed Central  Google Scholar 

  58. Villaflores, O.B., Ortega, K.M.M., Empaynado-Porto, A., Lirio, S., Yak, H.-K., Albano, D.R., and Corpuz, M.J.-A.T., Anti-angiogenic activity of Gracilaria coronopifolia J.G. Agardh extract by lowering the levels of trace metals (iron, zinc and copper) in duck chorioallantoic membrane and in vitro activation of AMP-kinase, Mol. Biol. Rep., 2019, vol. 46, pp. 4151–4160. https://doi.org/10.1007/s11033-019-04864-x

    Article  CAS  PubMed  Google Scholar 

  59. Waridel, P., Wolfender, J.-L., Lachavanne, J.-B., and Hostettmann, K., ent-Labdane diterpenes from the aquatic plant Potamogeton pectinatus,Phytochemistry, 2003, vol. 64, pp. 1309–1317.

    Article  CAS  Google Scholar 

  60. Waridel, P., Wolfender, J.-L., Lachavanne, J.-B., and Hostettmann, K., ent-Labdane glycosides from the aquatic plant potamogeton lucens and analytical evaluation of the lipophilic extract constituents of various potamogeton species, Phytochemistry, 2004, vol. 65, pp. 945–954.

    Article  CAS  Google Scholar 

  61. Yandex Maps. https://yandex.ru/maps/. Accessed February 11, 2020.

  62. Zuo, S., Zhou, S., Ye, L., Ding, Y., and Jiang, X., Antialgal effects of five individual allelochemicals and their mixtures in low level pollution conditions, Environ. Sci. Pollut. Res., 2016, vol. 23, pp. 15 703–15 711. https://doi.org/10.1007/s11356-016-6770-6

    Article  CAS  Google Scholar 

Download references

Funding

The work was carried out in the framework of the State Task of the Institute of Limnology, Russian Academy of Sciences (project nos. 0154-2019-0001 and 0154-2019-0002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Kurashov.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

COMPLIANCE WITH ETHICAL STANDARDS

The article does not contain any studies involving animals in experiments performed by any of the authors.

Additional information

Translated by D. Martynova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurashov, E.A., Krylova, J.V. & Rusanov, A.G. Change of Low-Molecular-Weight Metabolome of Alien Species Potamogeton pectinatus L. in Lake Ladoga in Comparison with Population of Native Range. Russ J Biol Invasions 11, 246–264 (2020). https://doi.org/10.1134/S2075111720030066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075111720030066

Keywords:

Navigation