Skip to main content
Log in

Ontogenetic Principles of Accelerated Aging and the Prospects for Its Prevention and Treatment

  • Published:
Advances in Gerontology Aims and scope Submit manuscript

Abstract

This article examines the phenomenon of “intrauterine programming,” which largely determines the further life cycle and the likelihood of developing a number of age-associated pathological processes. The possibility of the formation of pathological (accelerated) aging at various stages of ontogenesis is discussed with the use of a large amount of published material from the standpoint of modern science. The reasons, mechanisms and phenotypic manifestations of accelerated aging and the possibilities of the earliest, its diagnosis starting from the perinatal period, and prediction of age-associated pathologies are discussed in close interrelation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Anisimov, V.N., Molekulyarnye i fiziologicheskie mekhanizmy stareniya (v 2-kh t.) (Molecular and Physiological Mechanisms of Aging (2 vols.)), St. Petersburg: Nauka, 2008.

  2. Clinical Trials Database: Trial no. NCT03430037 of February 6, 2018, topic: “Alleviation by Fisetin of Frailty, Inflammation, and Related Measures in Older Women (AFFIRM)” (April 14, 2021) [electronic resource], ClinicalTrials.gov. URL: https://clinicaltrials.gov/ct2/home.

  3. www.who.int/selection_medicines/list/ru.

  4. Gavrilov, I.V., Meshchaninov, V.N., Shcherbakov, D.L., et al., Screening of functional, biochemical and cell-hematological parameters of the body as markers of human aging, Vestn. Ural’skoi Med. Akad. Nauki, 2018, vol. 15, no. 5, pp. 691–703.

    Google Scholar 

  5. Gavrilov, I.V., Meshchaninov, V.N., Shcherbakov, D.L., et al., Aging of the body and age-related dynamics of biomarkers of human gerodiagnostics, Vestn. Ural’skoi Med. Akad. Nauki, 2020, vol. 17, no. 4, pp. 272–284.

    Google Scholar 

  6. Gavrilov, L.A. and Gavrilova, N.S., Is aging a disease? Viewpoint of biodemographers, Usp. Gerontol., 2017, vol. 30, no. 6, pp. 841–842.

    CAS  Google Scholar 

  7. Golubev, A.G., Is aging a disease? Viewpoint of a biogerontologist: Old age ≠ illness, Adv. Gerontol., 2017, vol. 30, no. 6, pp. 845–847.

    CAS  Google Scholar 

  8. Dil’man, V.M., Bol’shie biologicheskie chasy. Vvedenie v integral’nuyu meditsinu (Big Biological Clock. Introduction into Integral Medicine), Moscow: Znanie, 1986.

  9. Trial “SRK-015 for Spinal Muscular Atrophy (SMA).” Scholar Rock Biopharmaceutical Company (April 15, 2021) [electronic resource], URL: https://scholarrock.com.

  10. www.sens.org/mitosens.

  11. Kovtun, O.P. and Tsyv’yan, P.B., Epigenetic mechanisms of fetal programming of diseases in children and adults, Ros. Vestn. Perinatol. Pediatr., 2009, vol. 54, no. 2, pp. 72–76.

    Google Scholar 

  12. http://www.proclarabio.com.

  13. www.turn.bio.

  14. Meshchaninov, V.N., Tkachenko, E.L., Zharkov, S.V., et al., Effects of synthetic peptides on aging tempos in patients with chronic polimorbid and psychoorganic disorders of the central nervous system at the stage of remission, Usp. Gerontol., 2015, vol. 28, no. 1, pp. 62–67.

    CAS  Google Scholar 

  15. Meshchaninov, V.N., Shcherbakov, D.L., and Lukash, V.A., Metabolizm kletochnykh struktur pri starenii i stresse (Metabolism of Cellular Structures in Aging and Stress), Yekaterinburg, 2017.

  16. Moskalev, A.A., Is aging a disease? Viewpoint of a geneticist, Usp. Gerontol., 2017, vol. 30, no. 6, pp. 843–844.

    CAS  Google Scholar 

  17. Myakotnykh, V.S., Is aging a disease? Viewpoint of a geriatrist, Usp. Gerontol., 2017, vol. 30, no. 6, pp. 848–850.

    CAS  Google Scholar 

  18. Myakotnykh, V.S., Torgashov, M.N., Egorin, K.V., et al., Comparative analysis of different methods of geroprotection, Usp. Gerontol., 2016, vol. 29, no. 4, pp. 594–601.

    CAS  Google Scholar 

  19. www.cnio.es/investigacion-e-innovacion/programas-cientificos/programa-de-oncologia-molecular/grupo-de-telomeros-y-telomerasa.

  20. Novikova, D.S., Garabadzhiu, A.V., Melino, G., et al., AMPK: structure, function and involvement in pathological processes, Biokhimiya, 2015, vol. 80, no. 2, pp. 163–183.

    Google Scholar 

  21. Novoselov, V.M., Is aging a disease? Usp. Gerontol., 2017, vol. 30, no. 6, pp. 836–840.

    CAS  Google Scholar 

  22. Rubinskii, A.V., Lin’kova, N.S., Chalisova, N.I., et al., Epigenetic regulation in pathology and aging, Usp. Gerontol., 2021, vol. 34, no. 1, pp. 10–17.

    CAS  Google Scholar 

  23. Khavinson, V.Kh., Therapeutic peptides: past, present, future, Klin. Med., 2020, vol. 98, no. 3, pp. 165–177.

    Article  Google Scholar 

  24. Aguilera, A. and García-Muse, T., Causes of genome instability, Annu. Rev. Genet., 2013, vol. 4, pp. 1–32.

    Article  Google Scholar 

  25. Aiken, C.E. and Ozanne, S.E., Transgenerational developmental programming, Hum. Reprod. Update, 2014, vol. 20, no. 1, pp. 63–75.

    Article  Google Scholar 

  26. Armanios, M. and Blackburn, E.H., The telomere syndromes, Nat. Rev. Genet., 2012, vol. 13, no. 10, pp. 693–704.

    Article  CAS  Google Scholar 

  27. Assadiasl, S., Mooney, N., Mohebbi, B., et al., Sirtuin 1: a dilemma in transplantation, J. Transplantat., 2020, vol. 2020, pp. 1–11. https://doi.org/10.1155/2020/9012980

    Article  Google Scholar 

  28. Assefa, B.T., Tafere, G.G., Wondafrash, D.Z., and Gidey, M.T., The bewildering effect of AMPK activators in Alzheimer’s disease: Review of the current evidence, Biomed. Res. Int., 2020, vol. 2020, аrticle ID 9895121. https://doi.org/10.1155/2020/9895121

  29. Barker, D.J. and Osmond, C., Childhood respiratory infection and adult chronic bronchitis in England and Wales, Brit. Med. J. (Clin. Res. Ed.), 1986, vol. 293, pp. 1271–1275.

    Article  CAS  Google Scholar 

  30. Barzilai, N., Crandall, J.P., Kritchevsky, S.B., and Espeland, M.A., Metformin as a tool to target aging, Cell Metab., 2016, vol. 23, no. 6, pp. 1060–1065.

    Article  CAS  Google Scholar 

  31. Blagosklonny, M.V., Aging is not programmed: genetic pseudo-program is a shadow of developmental growth, Cell Cycle, 2013, vol. 24, no. 12, pp. 3736–3742.

    Article  Google Scholar 

  32. Blasco, M.A., Bobadilla, M., Flores, J.M., et al., Therapeutic effects of telomerase in mice with pulmonary fibrosis induced by damage to the lungs and short telomeres, eLife, 2018, vol. 7. e31299. https://doi.org/10.7554/eLife.31299

  33. Bogan, K.L. and Brenner, C., Nicotinic acid, nicotinamide, and nicotinamide riboside: a molecular evaluation of NAD+ precursor vitamins in human nutrition, Ann. Rev. Nutr., 2008, vol. 28, pp. 115–130.

    Article  CAS  Google Scholar 

  34. Bosch-Presegué, L. and Vaquero, A., The dual role of sirtuins in cancer, Genes. Cancer, 2011, no. 6, pp. 648–662.

  35. Carafa, V., Nebbioso, A., and Altucci, L., Sirtuins and disease: the road ahead, Front. Pharmacol., 2012, no. 3, pp. 4–10.

  36. Carafa, V., Rotili, D., Forgione, M., et al., Sirtuin functions and modulation: from chemistry to the clinic, Clin. Epigenet., 2016, vol. 61, no. 8, pp. 2–21.

    Google Scholar 

  37. Chahal, J., Gómez-Aristizábal, A., Shestopaloff, K., et al., Bone marrow mesenchymal stromal cells in patients with osteoarthritis results in overall improvement in pain and symptoms and reduces synovial inflammation, Stem. Cells Transl. Med., 2019, vol. 8, no. 8, pp. 746–757.

    Article  CAS  Google Scholar 

  38. Chen, Y., Hong, T., Wang, S., et al., Epigenetic modification of nucleic acids: from basic studies to medical applications, Chem. Soc. Rev., 2017, vol. 46, no. 10, pp. 2844–2872.

    Article  CAS  Google Scholar 

  39. Chen, Y., Zhang, J., Lin, Y., et al., Tumour suppressor SIRT3 deacetylates and activates manganese superoxide dismutase to scavenge ROS, EMBO Rep., 2011, vol. 12, no. 6, pp. 534–541.

    Article  CAS  Google Scholar 

  40. Chesnokova, A.Y., Ekimova, I.V., and Pastukhov, Y.F., Parkinson’s disease and aging, Adv. Gerontol., 2018, vol. 31, no. 5, pp. 668–678.

    CAS  Google Scholar 

  41. Chiti, F. and Dobson, C.M., Protein misfolding, amyloid formation and human disease: a summary of progress over the last decade, Annu. Rev. Biochem., 2017, vol. 86, pp. 27–68.

    Article  CAS  Google Scholar 

  42. Coppé, J.P., Desprez, P.Y., Krtolica, A., and Campisi, J., The senescence-associated secretory phenotype: the dark side of tumor suppression, Ann. Rev. Pathol., 2010, no. 5, pp. 99–118.

  43. Corbett, N. and Alda, M., On telomeres long and short, J. Psychiatry Neurosci., 2015, vol. 40, no. 1, pp. 3–4.

    Article  Google Scholar 

  44. Corbi, G., Conti, V., Scapagnini, G., et al., Role of sirtuins, calorie restriction and physical activity in aging, Front. Biosci. (Elite Ed.), 2012, no. 4, pp. 768–778.

  45. Currais, A., Farrokhi, C., Dargusch, R., et al., Fisetin reduces the impact of aging on behavior and physiology in the rapidly aging SAMP8 mouse, J. Geront. A. Biol. Sci. Med. Sci., 2018, vol. 73, no. 3, pp. 299–307.

    Article  CAS  Google Scholar 

  46. Dubal, D.B., Yokoyama, J.S., Zhu, L., et al., Life extension factor Klotho enhances cognition, Cell Rep., 2014, vol. 7, no. 4, pp. 1065–1076.

    Article  CAS  Google Scholar 

  47. Dubal, D.B., Zhu, L., Sanchez, P.E., et al., Life extension factor Klotho prevents mortality and enhances cognition in HAPP transgenic mice, J. Neurosci., 2015, vol. 35, no. 6, pp. 2358–2371.

    Article  CAS  Google Scholar 

  48. Fisher, R.A., Krishnan, R., Tsubery, H., et al., A bacteriophage capsid protein provides a general amyloid interaction motif (GAIM) that binds and remodels misfolded protein assemblies, J. Mol. Biol., 2014, vol. 426, no. 13, pp. 2500–2519.

    Article  Google Scholar 

  49. Fontana, L., Partridge, L., and Longo, V.D., Extending healthy life span from yeast to humans, Science, 2010, vol. 5976, pp. 321–326.

    Article  Google Scholar 

  50. Franceschi, C., Garagnani, P., Vitale, G., et al., Inflammaging and ‘garb-aging,’ Trends Endocr. Metab., 2017, no. 3, pp. 199–212.

  51. Francheachi, C., Garagnani, P., Morsiani, C., et al., The continuum of aging and age-related diseases: common mechanisms but different rates, Front. Med., 2018, no. 6, pp. 21–23.

  52. Freund, A., Orjalo, A.V., Desprez, P.Y., and Campisi, J., Inflammatory networks during cellular senescence: causes and consequences, Trends Mol. Med., 2010, vol. 16, no. 5, pp. 238–246.

    Article  CAS  Google Scholar 

  53. Fulop, T., Witkowski, J.M., Olivieri, F., and Larbi, A., The integration of inflammaging in age-related diseases, Seminars Immunol., 2018, vol. 40, pp. 17–35.

    Article  CAS  Google Scholar 

  54. Gal, H., Porat, Z., and Krizhanovsky, V., A multiparametric assay to evaluate senescent cells, Methods Mol. Biol., 2019, vol. 1896, pp. 107–117. https://doi.org/10.1007/978-1-4939-8931-7_11

    Article  CAS  Google Scholar 

  55. Giardini, M.A., Segatto, M., da Silva, M.S., et al., Telomere and telomerase biology, Prog. Mol. Biol. Transl. Sci., 2014, vol. 125, pp. 1–40.

    Article  CAS  Google Scholar 

  56. Goldberg, J., Currais, A., Prior, M., et al., The mitochondrial ATP-synthase is a shared drug target for aging and dementia, Aging Cell, 2018, vol. 17, no. 2, pp. 1–13.

    Article  Google Scholar 

  57. Golpanian, S., DiFede, D.L., Khan, A., et al., Allogeneic human mesenchymal stem cell infusions for aging frailty, J. Gerontol. Biol. Sci., 2017, vol. 72, no. 11, pp. 1505–1512.

    Article  CAS  Google Scholar 

  58. González, A., Hall, M.N., Lin, S.C., and Hardie, D.G., AMPK and TOR: the Yin and Yang of cellular nutrient sensing and growth control, Cell Metab., 2020, vol. 31, no. 3, pp. 472–492.

    Article  Google Scholar 

  59. Gonzalez-Rodriguez, P.J., Tong, W., Xue, Q., et al., Fetal hypoxia results in programming of aberrant angiotensin II receptor expression patterns and kidney development, Int. J. Med. Sci., 2013, vol. 10, no. 5, pp. 532–538.

    Article  CAS  Google Scholar 

  60. Greer, E.L., Oskoui, P.R., Banko, M.R., et al., The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor, J. Biol. Chem., 2007, vol. 282, no. 41, pp. 30107–30119.

    Article  CAS  Google Scholar 

  61. Harley, C.B., Futcher, A.B., and Greider, C.W., Telomeres shorten during ageing of human fibroblasts, Nature, 1990, vol. 345, no. 6274, pp. 458–460.

    Article  CAS  Google Scholar 

  62. Hawkins, P.T. and Stephens, L.R., PI3K signalling in inflammation, Biochim. Biophys. Acta, 2015, vol. 1851, no. 6, pp. 882–897.

    Article  CAS  Google Scholar 

  63. Hayflick, L. and Moorhead, P.S., The serial cultivation of human diploid cell strains, Exp. Cell Res., 1961, vol. 25, no. 3, pp. 585–621.

    Article  CAS  Google Scholar 

  64. Hekimi, S., Lapointe, J., and Wen, Y., Taking a “good” look at free radicals in the aging process, Trends Cell Biol., 2011, vol. 21, no. 10, pp. 569–576.

    Article  CAS  Google Scholar 

  65. Higashi, Y., Sukhanov, S., Anwar, A., et al., IGF-1, oxidative stress and atheroprotection, Trends Endocr. Metab., 2010, no. 21, pp. 245–254.

  66. Hogg, K., Blair, J.D., McFadden, D.E., et al., Early onset pre-eclampsia is associated with altered DNA methylation of cortisol-signalling and steroidogenic genes in the placenta, PLoS One, 2013, vol. 8, no. 5. e62969. https://doi.org/10.1371/journal.pone.0062969

  67. Jackson, M.P. and Hewitt, E.W., Cellular proteostasis: degradation of misfolded proteins by lysosomes, Essays Biochem., 2016, vol. 60, no. 2, pp. 173–180.

    Article  Google Scholar 

  68. Jiang, H., Ju, Z., and Rudolph, K.L., Telomere shortening and ageing, J. Gerontol. Geriatr., 2007, vol. 40, no. 5, pp. 314–324.

    Article  CAS  Google Scholar 

  69. Jones, R.G., Plas, D.R., Kubek, S., et al., AMP-activated protein kinase induces a p53-dependent metabolic checkpoint, Mol. Cell, 2005, vol. 18, no. 3, pp. 283–293.

    Article  CAS  Google Scholar 

  70. Justice, J.N., Ferrucci, L., Newman, A.B., et al., A framework for selection of blood-based biomarkers for geroscience-guided clinical trials: report from the Tame Biomarkers Workgroup, Geroscience, 2018, vol. 40, nos. 5–6, pp. 419–436.

    Article  CAS  Google Scholar 

  71. Kelly, G., A review of the sirtuin system, its clinical implications, and the potential role of dietary activators like resveratrol: part 1, Altern. Med. Rev., 2010, vol. 15, no. 3, pp. 245–263.

    Google Scholar 

  72. Kim, J. and Miller, S., Geriatric syndromes: meeting a growing challenge, Nurs. Clin. North Amer., 2017, vol. 52, no. 3.

  73. Kirkland, J.L., Navarro, D.C., Sano, T., et al., The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs, Aging Cell, 2015, vol. 14, no. 4, pp. 644–658.

    Article  Google Scholar 

  74. Krishnan, R., Lulu, M., Rockwell-Postel, C., et al., Stability and inter-domain interactions modulate amyloid binding activity of a general amyloid interaction motif, J. Mol. Biol., 2019, vol. 431, no. 10, pp. 1920–1939.

    Article  Google Scholar 

  75. Krukiewicz, K., Kowalik, A., Turczyn, R., and Biggs, M.J.P., In vitro attenuation of astrocyte activation and neuroinflammation through ibuprofen-doping of poly(3,4-ethylenedioxypyrrole) formulations, Bioelectrochemistry, 2020, vol. 134, p. 107528.

    Article  CAS  Google Scholar 

  76. Kundakovic, M. and Jaric, I., The epigenetic link between prenatal adverse environments and neurodevelopmental disorders, Genes (Basel), 2017, vol. 8, no. 3, p. 104.

    Article  Google Scholar 

  77. Lee, J.S., Cellular senescence, aging, and age-related disease: special issue of BMB Reports in 2019, BMB Rep., 2019, vol. 52, no. 1, pp. 1–2.

    Article  CAS  Google Scholar 

  78. Leo, L., Marchetti, M., Giunta, S., and Fanti, L., Epigenetics as an evolutionary tool for centromere flexibility, Genes, 2020, vol. 11, no. 7, p. 809.

    Article  CAS  Google Scholar 

  79. Liang, J., Shao, S.H., Xu, Z.X., et al., The energy sensing LKB1-AMPK pathway regulates p27 (Kip1) phosphorylation mediating the decision to enter autophagy or apoptosis, Nat. Cell. Biol., 2007, vol. 9, no. 2, pp. 218–224.

    Article  CAS  Google Scholar 

  80. Lin, J., Handschin, C., and Spiegelman, B.M., Metabolic control through the PGC-1 family of transcription coactivators, Cell. Metab., 2005, no. 6, pp. 361–370.

  81. Lin, X., Meaney, M.J., Godfrey, K.M., et al., Developmental pathways to adiposity begin before birth and are influenced by genotype, prenatal environment and epigenome, BMC Med., 2017, vol. 15, no. 1, pp. 1–18.

    Article  Google Scholar 

  82. Liu, A., Guo, E., Yang, J., et al., Young plasma reverses age-dependent alterations in hepatic function through the restoration of autophagy, Aging Cell, 2018, vol. 17, no. 1, pp. 1–13.

    Article  Google Scholar 

  83. Liu, J., Wang, L., Wang, Z., and Liu, J.P., Roles of telomere biology in cell senescence, replicative and chronological ageing, Cells, 2019, vol. 8, no. 1, p. 54.

    Article  CAS  Google Scholar 

  84. Long, K.K., O’Shea, K.M., Khairallah, R.J., et al., Specific inhibition of myostatin activation is beneficial in mouse models of SMA therapy, Hum. Mol. Genet., 2019, vol. 28, no. 7, pp. 1076–1089.

    Article  CAS  Google Scholar 

  85. López-Otín, C., Blasco, M.A., Partridge, L., et al., The hallmarks of aging, Cell, 2013, vol. 153, no. 6, pp. 1194–1217.

    Article  Google Scholar 

  86. Macedo, J.C., Vaz, S., and Logarinho, E., Mitotic dysfunction associated with aging hallmarks, Adv. Exp. Med. Biol., 2017, vol. 1002, pp. 153–188.

    Article  CAS  Google Scholar 

  87. Mailloux, R.J., An update on mitochondrial reactive oxygen species production, Antioxidants, 2020, vol. 9, no. 6, p. 472.

    Article  CAS  Google Scholar 

  88. Mannick, J., TORC1 inhibition as a potential immunotherapy to reduce infections in the elderly, Innov. Aging, 2018, no. S1, pp. 545–550.

  89. Márquez Loza, A., Elias, V., Wong, C.P., et al., Effects of ibuprofen on cognition and NMDA receptor subunit expression across aging, Neuroscience, 2017, vol. 344, pp. 276–292.

    Article  Google Scholar 

  90. Mavrogonatou, E., Pratsinis, H., Papadopoulou, A., et al., Extracellular matrix alterations in senescent cells and their significance in tissue homeostasis, Matrix Biol., 2019, vols. 75–76, pp. 27–42.

    Article  Google Scholar 

  91. Miller, J.D., Schafer, M.J., Tchkonia, T., et al., Chronic senolytic treatment alleviates established vasomotor dysfunction in aged or atherosclerotic mice, Aging Cell, 2016, vol. 15, no. 5, pp. 973–977.

    Article  Google Scholar 

  92. Milman, S., Huffman, D.M., and Barzilai, N., The somatotropic axis in human aging: framework for the current state of knowledge and future research, Cell. Metab., 2016, vol. 23, no. 6, pp. 980–989.

    Article  CAS  Google Scholar 

  93. Morgunova, G.V. and Klebanov, A.A., Age-related AMP-activated protein kinase alterations: from cellular energetics to longevity, Cell. Biochem. Funct., 2019, vol. 37, no. 3, pp. 169–176.

    Article  CAS  Google Scholar 

  94. Mostoslavsky, R., Chua, K.F., Lombard, D.B., et al., Genomic instability and aging-like phenotype in the absence of mammalian SIRT6, Cell, 2006, vol. 124, no. 2, pp. 315–329.

    Article  CAS  Google Scholar 

  95. Nambiar, A., Justice, J.N., Pascual, R.M., et al., Targeting pro-inflammatory cells in idiopathic pulmonary fibrosis: an open-label pilot study of dasatinib and quercetin, Chest, 2018, vol. 154, no. 4, рр. 395A–396A.

  96. Nikolich-Žugich, J., The twilight of immunity: emerging concepts in aging of the immune system, Nat. Immunol., 2018, vol. 19, no. 1, pp. 10–19.

    Article  Google Scholar 

  97. Ocampo, A., Reddy, P., Martinez-Redondo, P., and Platero-Luengo, A., In vivo amelioration of age-associated hallmarks by partial reprogramming, Cell, 2016, vol. 167, no. 7, pp. 1719–1733.

    Article  CAS  Google Scholar 

  98. O’Connor, M.S., Boominathan, A., Vanhoozer, S., and Basisty, N., Stable nuclear expression of ATP8 and ATP6 genes rescues a mtDNA complex V null mutant, Nucleic Acids Res., 2016, vol. 44, no. 19, pp. 9342–9357.

    Google Scholar 

  99. Olovnikov, A.M., Telomeres, telomerase, and aging: origin of the theory, Exp. Gerontol., 1996, vol. 31, pp. 443–448.

    Article  CAS  Google Scholar 

  100. Osafune, K., Yamanaka, S., Yashiro, Y., et al., Induced pluripotent stem cells and their use in human models of disease and development, Physiol. Rev., 2019, vol. 99, no. 1, pp. 79–114.

    Article  Google Scholar 

  101. Palacios, J.A., Herranz, D., De Bonis, M.L., et al., SIRT1 contributes to telomere maintenance and augments global homologous recombination, J. Cell Biol., 2010, vol. 191, no. 7, pp. 1299–1313.

    Article  CAS  Google Scholar 

  102. Parabiosis: Reverse aging with young blood? Podcast with Irina and Michal Conboy, on January 20, 2017. URL: https://blog.humanos.me/can-we-reverse-aging-with-young-blood.

  103. Park, S., Mori, R., and Shimokawa, I., Do sirtuins promote mammalian longevity? A critical review on its relevance to the longevity effect induced by calorie restriction, Mol. Cells, 2013, vol. 35, no. 6, pp. 474–480.

    Article  CAS  Google Scholar 

  104. Patterson, A.J. and Zhang, L., Hypoxia and fetal heart development, Curr. Mol. Med., 2010, vol. 10, no. 7, pp. 653–666.

    Article  CAS  Google Scholar 

  105. Pirruccello-Straub, M., Jackson, J., Wawersik, S., et al., Blocking extracellular activation of myostatin as a strategy for treating muscle wasting, Sci. Rep., 2018, vol. 8, no. 1, p. 2292.

    Article  CAS  Google Scholar 

  106. Prior, M., Dargusch, R., Ehren, J.L., and Chiruta, C., The neurotrophic compound J147 reverses cognitive impairment in aged Alzheimer’s disease mice, Alzheimers Res. Ther., 2013, vol. 5, no. 3, pp. 25–30.

    Article  CAS  Google Scholar 

  107. Rogers, J.T., Liu, C.C., Zhao, N., et al., Subacute ibuprofen treatment rescues the synaptic and cognitive deficits in advanced-aged mice, Neurobiol. Aging, 2017, vol. 53, pp. 112–121.

    Article  CAS  Google Scholar 

  108. Rossi, D.J., Bryder, D., Seita, J., et al., Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age, Nature, 2007, vol. 447, pp. 725–729.

    Article  CAS  Google Scholar 

  109. Salmon, A.B., Dorigatti, J., Huber, H.F., et al., Maternal nutrient restriction in baboon programs later-life cellular growth and respiration of cultured skin fibroblasts: a potential model for the study of aging-programming interactions, Geroscience, 2018, vol. 40, no. 3, pp. 269–278.

    Article  CAS  Google Scholar 

  110. Samovski, D., Sun, J., Pietka, T., et al., Regulation of AMPK activation by CD36 links fatty acid uptake to β‑oxidation, Diabetes, 2015, vol. 64, no. 2, pp. 353–359.

    Article  CAS  Google Scholar 

  111. Sarkar, Т.J., Quarta, M., Mukherjee, S., et al., Transient non-integrative nuclear reprogramming promotes multifaceted reversal of aging in human cells, Nat Commun 11, 1545 (2020). https://www.biorxiv.org/content/10.1101/573386v1

  112. Shallis, R.M., Boddu, P.C., Bewersdorf, J.P., and Zeidan, A.M., The golden age for patients in their golden years: the progressive upheaval of age and the treatment of newly-diagnosed acute myeloid leukemia, Blood Rev., 2020, vol. 40, p. 100639.

    Article  CAS  Google Scholar 

  113. Shay, J.W., Telomeres and aging, Curr. Opin. Cell Biol., 2018, vol. 52, pp. 1–7.

    Article  CAS  Google Scholar 

  114. Sinclair, D.A., Steegborn, C., Aravind, L., and Gorbunova, V., A conserved NAD+ binding pocket that regulates protein–protein interactions during aging, Science, 2017, vol. 355, pp. 1312–1317.

    Article  Google Scholar 

  115. Soares, M.J., Iqbal, K., and Kozai, K., Hypoxia and placental development, Birth. Defects Res., 2017, vol. 109, no. 17, pp. 1309–1329.

    Article  CAS  Google Scholar 

  116. Srinivas, N., Rachakonda, S., and Kumar, R., Telomeres and telomere length: a general overview, Cancers, 2020, vol. 12, no. 3, p. 558.

    Article  CAS  Google Scholar 

  117. Sundarraj, K., Raghunath, A., and Perumal, E., A review on the chemotherapeutic potential of fisetin: In vitro evidences, Biomed. Pharmacother., 2018, vol. 97, pp. 928–940.

    Article  CAS  Google Scholar 

  118. Than, N.G., Romero, R., Tarca, A.L., et al., Integrated systems biology approach identifies novel maternal and placental pathways of preeclampsia, Front. Immunol., 2018, vol. 9, pp. 1661–1670.

    Article  Google Scholar 

  119. Thomas, I. and Gregg, B., Metformin; a review of its history and future: from lilac to longevity, Pediatr. Diabetes, 2017, vol. 18, no. 1, pp. 10–16.

    Article  Google Scholar 

  120. Tompkins, B.A., DiFede, D.L., Khan, A., et al., Allogeneic mesenchymal stem cells ameliorate aging frailty: a phase II randomized, double-blind, placebo-controlled clinical trial, J. Gerontol. A Biol. Sci. Med. Sci., 2017, vol. 72, no. 11, pp. 1513–1522.

    Article  CAS  Google Scholar 

  121. Tsyvian, P.B., Bashmakova, N.V., Kovtun, O.P., and Makarenko, L.V., Maternal and newborn infants amino acid concentrations in obese women born themselves with normal and small for gestational age birth weight, J. Dev. Orig. Health Dis., 2015, vol. 6, no. 4, pp. 278–284.

    Article  CAS  Google Scholar 

  122. Tsyvian, P.B., Markova, T.V., Mikhailova, S.V., and Hop, W.C., Left ventricular isovolumic relaxation and renin–angiotensin system in the growth restricted fetus, Europ. J. Obstet. Gynec. Reprod. Biol., 2008, vol. 140, no. 1, pp. 33–37.

    Article  CAS  Google Scholar 

  123. Vaiserman, A., Koliada, A., and Lushchak, O., Developmental programming of aging trajectory, Ageing Res. Rev., 2018, no. 47, pp. 105–122.

  124. Vassilopoulos, A., Pennington, J.D., Andresson, T., et al., SIRT3 deacetylates ATP synthase F1 complex proteins in response to nutrient- and exercise-induced stress, Antioxid. Redox. Signal., 2014, vol. 21, no. 4, pp. 551–564.

    Article  CAS  Google Scholar 

  125. Vijg, J., Dong, X., Milholland, B., and Zhang, L., Genome instability: A conserved mechanism of ageing?, Essays Biochem., 2017, vol. 61, no. 3, pp. 305–315.

    Article  Google Scholar 

  126. Vitale, G., Pellegrino, G., Vollery, M., and Hofland, L.J., Role of IGF-1 system in the modulation of longevity: controversies and new insights from a centenarians’ perspective, Front. Endocr. (Lausanne), 2019, vol. 10, аrt. 27. https://doi.org/10.3389/fendo.2019.00027

    Google Scholar 

  127. Vlad, S.C., Miller, D.R., Kowall, N.W., and Felson, D.T., Protective effects of NSAIDs on the development of Alzheimer disease, Neurology, 2008, vol. 70, no. 19, pp. 1672–1677.

    Article  CAS  Google Scholar 

  128. Weichhart, T., mTOR as regulator of lifespan, aging, and cellular senescence: a mini-review, Gerontology, 2018, vol. 64, no. 2, pp. 127–134.

    Article  CAS  Google Scholar 

  129. Yakar, S. and Adamo, M.L., Insulin-like growth factor 1 physiology: lessons from mouse models, Endocr. Metab. Clin. North Amer., 2012, no. 41, pp. 231–247.

  130. Yang, B., Zwaans, B.M., Eckersdorff, M., and Lombard, D.B., The sirtuin SIRT6 deacetylates H3 K56Ac in vivo to promote genomic stability, Cell Cycle, 2009, vol. 16, no. 8, pp. 2662–2663.

    Article  Google Scholar 

  131. Yousef, H., Conboy, M.J., Morgenthaler, A., et al., Systemic attenuation of the TGF-β pathway by a single drug simultaneously rejuvenates hippocampal neurogenesis and myogenesis in the same old mammal, Oncotarget, 2015, vol. 14, no. 6, pp. 11 959–11 978.

    Article  Google Scholar 

  132. Yousefzadeh, M.J., Zhu, Y., McGowan, S.J., et al., Fisetin is a senotherapeutic that extends health and lifespan, E. Bio. Med., 2018, vol. 36, pp. 18–28.

    Google Scholar 

  133. Zhao, L. and Sumberaz, P., Mitochondrial DNA damage: prevalence, biological consequence, and emerging pathways, Chem. Res. Toxicol., 2020, vol. 33, no. 10, pp. 2491–2502.

    Article  CAS  Google Scholar 

Download references

Funding

The paper was supported as a part of the state task the Ministry of Health of the Russian Federation for 2021–2023, registration no. 121030900298-9 “Individualization of the selection of complex geroprophylactic therapy.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Meshchaninov.

Ethics declarations

The authors declare that they have no conflicts of interest.

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants involved in the study.

Additional information

Translated by P. Kuchina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meshchaninov, V.N., Tsyvian, P.B., Myakotnykh, V.S. et al. Ontogenetic Principles of Accelerated Aging and the Prospects for Its Prevention and Treatment. Adv Gerontol 12, 294–304 (2022). https://doi.org/10.1134/S2079057022030080

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079057022030080

Keywords:

Navigation