Skip to main content
Log in

The key role of PIN proteins in auxin transport in Arabidopsis thaliana Roots

  • Published:
Russian Journal of Genetics: Applied Research

Abstract

Plant hormone auxin is the key factor in plant morphogenesis. Being unevenly distributed in plant tissues, it forms gradients and concentration maxima, according to which cells grow, divide, and differentiate. The family of PIN-FORMED (PIN) proteins representing transmembrane auxin transporters plays the key role in the formation of auxin gradients. The plant root represents the most appropriate model for studying of morphogenesis regulation due to its relatively simple cellular organization. This review describes the expression patterns of PIN transporters and their contribution to auxin distribution in the Arabidopsis root. Mathematical models, which proved the relationship between the expression pattern of PIN proteins and auxin distribution in the root meristem are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Band, L.R., Wells, D.M., Fozard, J., et al., Systems analysis of auxin transport in the Arabidopsis root apex, Plant Cell, 2014, Vol. 26, No. 3, pp. 862–875.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Benfey, P.N. and Schiefelbein, J.W., Getting to the root of plant development: the genetics of Arabidopsis root formation, Trends Genet., 1994, Vol. 10, No. 3, pp. 84–88.

    Article  CAS  PubMed  Google Scholar 

  • Bennett, M.J., Marchant, A., Green, H.G., et al., Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism, Science, 1996, Vol. 273, pp. 948–950.

    Article  CAS  PubMed  Google Scholar 

  • Blakeslee, J.J., Ann, W., Angus, P., et al., MDR/PGP auxin transport proteins and endocytic cycling, Curr. Opin. Plant Biol., 2005, Vol. 8, No. 5, pp. 494–500.

    Article  CAS  PubMed  Google Scholar 

  • Blilou, I., Xu, J., Wildwater, M., Willemsen, V., et al., The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots, Nature, 2005, Vol. 433, pp. 39–44.

    Article  CAS  PubMed  Google Scholar 

  • Brunoud, G., Wells, D.M., Oliva, M., et al., A novel sensor to map auxin response and distribution at high spatiotemporal resolution, Nature, 2012, Vol. 482, pp. 103–106.

    Article  CAS  PubMed  Google Scholar 

  • Dhonukshe, P., Huang, F., Galvan-Ampudia, C.S., et al., Plasma membrane-bound AGC3 kinases phosphorylate PIN auxin carriers at TPRXS(N/S) motifs to direct apical PIN recycling, Development, 2010, Vol. 137, No. 19, pp. 3245–3255.

    Article  CAS  PubMed  Google Scholar 

  • Dolan, L., Janmaat, K., Willemsen, V., et al., Cellular organisation of the Arabidopsis thaliana root, Development, 1993, Vol. 119, No. 1, pp. 71–84.

    CAS  PubMed  Google Scholar 

  • Friml, J., Benkova, E., Blilou, I., et al., AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis, Cell, 2002a, Vol. 108, No. 5, pp. 661–673.

    Article  CAS  PubMed  Google Scholar 

  • Friml, J., Wisniewska, J., Benkova, E., et al., Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis, Nature, 2002b, Vol. 415, pp. 806–809.

    Article  PubMed  Google Scholar 

  • Friml, J., Vieten, A., Sauer, M., et al., Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis, Nature, 2003, Vol. 426, pp. 147–153.

    Article  CAS  PubMed  Google Scholar 

  • Geisler, M. and Murphy, A.S., The ABC of auxin transport: the role of p-glycoproteins in plant development, FEBS Lett., 2006, Vol. 580, No. 4, pp. 1094–1102.

    Article  CAS  PubMed  Google Scholar 

  • Geldner, N., Friml, J., Stierhof, Y.D., et al., Auxin transport inhibitors block PIN1 cycling and vesicle trafficking, Nature, 2001, Vol. 413, pp. 425–428.

    Article  CAS  PubMed  Google Scholar 

  • Grieneisen, V.A., Xu, J., Maree, A.F.M., et al., Auxin transport is sufficient to generate a maximum and gradient guiding root growth, Nature, 2007, Vol. 449, pp. 1008–1013.

    Article  CAS  PubMed  Google Scholar 

  • Habets, M.E. and Offringa, R., PIN-driven polar auxin transport in plant developmental plasticity: a key target for environmental and endogenous signals, New Phytol., 2014, Vol. 203, No. 2, pp. 362–377.

    Article  CAS  PubMed  Google Scholar 

  • Jürgens, G., Apical-basal pattern formation in Arabidopsis embryogenesis, EMBO J., 2001, Vol. 20, No. 14, pp. 3609–3616.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kleine-Vehn, J., Wabnik, K., Martiniere, A., et al., Recycling, clustering, and endocytosis jointly maintain pin auxin carrier polarity at the plasma membrane, Mol. Systems Biol., 2011, vol. 7, p. 540.

    Article  Google Scholar 

  • Krecek, P., Skupa, P., Libus, J., et al., Protein family review the pin-formed (PIN) protein family of auxin transporters, Genome Biol., 2009, vol. 10, no. 12, p. 249.

    Article  PubMed Central  PubMed  Google Scholar 

  • Likhoshvai, V.A., Omelyanchuk, N.A., Mironova, V.V., et al., Mathematical model of auxin distribution in the plant root, Russ. J. Dev. Biol., 2007, Vol. 38, No. 6, pp. 374–382.

    Article  CAS  Google Scholar 

  • Ljung, K., Bhalerao, R.P., and Sandberg, G., Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth, Plant J., 2002, Vol. 28, No. 4, pp. 465–474.

    Article  Google Scholar 

  • Medvedev, S.S., Mechanisms and physiological role of polarity in plants, Russ. J. Plant Physiol., 2012, Vol. 59, No. 4, pp. 502–514.

    Article  CAS  Google Scholar 

  • Mironova, V.V., Omelyanchuk, N.A., Yosiphon, G., et al., A plausible mechanism for auxin patterning along the developing root, BMC Syst. Biol., 2010, vol. 4, no. 1, p. 98.

    Article  PubMed Central  PubMed  Google Scholar 

  • Mironova, V.V., Omelyanchuk, N.A., et al., Combined in silico/in vivo analysis of mechanisms providing for root apical meristem self-organization and maintenance, Ann. Bot., 2012, Vol. 110, No. 2, pp. 349–360.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mravec, J., Skupa, P., Bailly, A., et al., Subcellular homeostasis of phytohormone auxin is mediated by the ER-localized PIN5 transporter, Nature, 2009, Vol. 459, pp. 1136–1140.

    Article  CAS  PubMed  Google Scholar 

  • Petrasek, J., Mravec, J., Bouchard, R., et al., Pin proteins perform a rate-limiting function in cellular auxin efflux, Science, 2006, Vol. 312, pp. 914–918.

    Article  CAS  PubMed  Google Scholar 

  • Sabatini, S., Beis, D., Wolkenfelt, H., et al., An auxindependent distal organizer of pattern and polarity in the Arabidopsis root, Cell, 1999, Vol. 99, No. 5, pp. 463–472.

    Article  CAS  PubMed  Google Scholar 

  • De Smet, I., Tetsumura, T., De Rybel, B., et al., Auxindependent regulation of lateral root positioning in the basal meristem of Arabidopsis, Development, 2007, Vol. 134, No. 4, pp. 681–690.

    Article  PubMed  Google Scholar 

  • Steinmann, T., Geldner, N., Grebe, M., et al., Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF, Science, 1999, Vol. 286, pp. 316–318.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka, H., Dhonukshe, P., Brewer, P.B., and Friml, J., Spatiotemporal asymmetric auxin distribution: a means to coordinate plant development, Cell. Mol. Life Sci.: CMLS, 2006, Vol. 63, No. 23, pp. 2738–2754.

    Article  CAS  PubMed  Google Scholar 

  • Tejos, R., Sauer, M., Vanneste, S., et al., Bipolar plasma membrane distribution of phosphoinositides and their requirement for auxin-mediated cell polarity and patterning in Arabidopsis, Plant Cell, 2014, Vol. 26, No. 5, pp. 2114–2128.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ugartechea-Chirino, Y., Swarup, R., Swarup, K., et al., The AUX1 LAX family of auxin influx carriers is required for the establishment of embryonic root cell organization in Arabidopsis thaliana, Ann. Bot., 2010, Vol. 105, No. 2, pp. 277–289.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ulmasov, T., Murfett, J., Hagen, G., and Guilfoyle, T.J., Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements, Plant Cell Online, 1997, Vol. 9, No. 11, pp. 1963–1971.

    Article  CAS  Google Scholar 

  • Vanneste, S. and Friml, J., Auxin: a trigger for change in plant development, Cell, 2009, Vol. 136, No. 6, pp. 1005–1016.

    Article  CAS  PubMed  Google Scholar 

  • Vieten, A., Vanneste, S., Wisniewska, J., et al., Functional redundancy of PIN proteins is accompanied by auxindependent cross-regulation of pin expression, Development, 2005, Vol. 132, No. 20, pp. 4521–4531.

    Article  CAS  PubMed  Google Scholar 

  • Vieten, A., Sauer, M., Brewer, P.B., and Friml, J., Molecular and cellular aspects of auxin-transport-mediated development, Trends Plant Sci., 2007, Vol. 12, No. 4, pp. 160–168.

    Article  CAS  PubMed  Google Scholar 

  • Wisniewska, J., Xu, J., Seifertova, D., et al., Polar pin localization directs auxin flow in plants, Science, 2006, vol. 312, p. 883.

    Article  CAS  PubMed  Google Scholar 

  • Zazimalová, E., Murphy, A.S., Yang, H., Hoyerová, K., and Hosek, P., Auxin transporters—why so many?, Cold Spring Harbor Persp. Biol., 2010, vol. 2, no. 3, p. a001552.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Kovrizshnykh.

Additional information

Original Russian Text © V.V. Kovrizshnykh, N.A. Omelyanchuk, T.P. Pasternak, V.V. Mironova, 2014, published in Vavilovskii Zhurnal Genetiki i Selektsii, 2014, Vol. 18, No. 4/1, pp. 797–806.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovrizshnykh, V.V., Omelyanchuk, N.A., Pasternak, T.P. et al. The key role of PIN proteins in auxin transport in Arabidopsis thaliana Roots. Russ J Genet Appl Res 5, 279–285 (2015). https://doi.org/10.1134/S2079059715030089

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079059715030089

Keywords

Navigation