Skip to main content
Log in

Neurobiology of Zinc

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract—

This review presents the results of research concerning the role of zinc in neuronal membranes and synaptic processes. The development of views on zinc as an essential trace element is analyzed, from the demonstration of its catalytic, metabolic, and structural function to the elucidation of its regulatory role in intra- and inter-neuronal interactions. The body of information accumulated over recent decades on the significance of zinc for neuronal activity, in particular, for the regulation of excitation or inhibition, as well as for certain fine-tuned processes in the nerve cell membrane, is evaluated. The involvement of zinc in the functioning of the mediator brain systems, primarily, the glutamatergic system, is discussed. The available data on zinc vesiculation in neurons and its potential-dependent release into the synaptic cleft are analyzed. The processes in pre- or postsynaptic neuronal membranes involving zinc are described. Theories and hypotheses that expand views on zinc as a signal molecule are assessed. Attention is drawn to a number of controversial ideas and unsolved problems. For the specific case of the striatal nuclei, a hypothesis is developed about the involvement of vesicular zinc in the regulation of balance between the direct and indirect pathways, the two efferent systems of this subcortical formation, which is important for normal locomotor behavior and the prevention of neuromotor dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Ade, K.K., Janssen, M.J., Ortinski, P.I., and Vicini, S., Differential tonic GABA conductances in striatal medium spiny neurons, J. Neurosci., 2008, vol. 28, no. 5, pp. 1185–1197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Arons, M.H., Lee, K., Thynne, Ch.J., et al., Shank3 is part of a zinc-sensitive signaling system that regulates excitatory synaptic strength, J. Neurosci., 2016, vol. 36, no. 35, pp. 9124–9134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Assaf, S.Y. and Chung, S.H., Release of endogenous Zn2+ from brain tissue during activity, Nature, 1984, vol. 308, pp. 734–736.

    Article  CAS  PubMed  Google Scholar 

  4. Barberis, A., Cherubini, E., and Mozrzymas, J.W., Zinc inhibits miniature GABAergic currents by allosteric modulation of GABA-A receptor gating, J. Neurosci., 2000, vol. 20, no. 23, pp. 8618–8627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Barrondo, S. and Salles, J., Allosteric modulation of 5-HT1A receptors by zinc: binding studies, Neuropharmacology, 2009, vol. 56, no. 2, pp. 455–462.

    Article  CAS  PubMed  Google Scholar 

  6. Belelli, D., Harrison, N.L., Maguire, J., et al., Extrasynaptic GABAA receptors: form, pharmacology, and function, J. Neurosci., 2009, vol. 29, no. 41, pp. 12757–12763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Besser, L., Chorin, E., Sekler, I., et al., Synaptically released zinc triggers metabotropic signaling via a zinc-sensing receptor in the hippocampus, J. Neurosci., 2009, vol. 29, no. 9, pp. 2890–2901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bitanihirwe, B.K. and Cunningham, M.G., Zinc: the brain’s dark horse, Synapse, 2009, vol. 63, no. 11, pp. 1029–1049.

    Article  CAS  PubMed  Google Scholar 

  9. Brickley, S.G. and Mody, I., Extrasynaptic GABAA receptors: their function in the CNS and implications for disease, Neuron, 2012, vol. 73, no. 1, pp. 23–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Carver, Ch.M., Chuang, Sh.-H., and Reddy, D.S., Zinc selectively blocks neurosteroid-sensitive extrasynaptic δ-GABA-A receptors in the hippocampus, J. Neurosci., 2016, vol. 36, no. 31, pp. 8070–8077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chorin, E., Vinograd, O., Fleidervish, I., et al., Upregulation of KCC2 activity by zinc-mediated neurotransmission via the mZnR/GPR39 receptor, J. Neurosci., 2011, vol. 31, no. 36, pp. 12916–12926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cichy, A., Sowa-Kućma, M., Legutko, B., et al., Zinc-induced adaptive changes in NMDA/glutamatergic and serotonergic receptors, Pharmacol. Rep., 2009, vol. 61, no. 6, pp. 1184–1191.

    Article  CAS  PubMed  Google Scholar 

  13. Cohen-Kfir, E., Lee, W., Eskandari, S., and Nelson, N., Zinc inhibition of gamma-aminobutyric acid transporter 4 (GAT4) reveals a link between excitatory and inhibitory neurotransmission, Proc. Natl. Acad. Sci. U.S.A., 2005, vol. 102, no. 17, pp. 6154–6159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cole, T.B., Wenzel, H.J., Kafer, K.E., et al., Elimination of zinc from synaptic vesicles in the intact mouse brain by disruption of the ZnT3 gene, Proc. Natl. Acad. Sci. U.S.A., 1999, vol. 96, no. 4, pp. 1716–1721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Colvin, R.A., Davis, N., Nipper, R.W., and Carter, Ph.A., Zinc transport in the brain: routes of zinc influx and efflux in neurons, J. Nutr., 2000, vol. 130, no. 5, pp. 1484S–1487S.

    Article  CAS  PubMed  Google Scholar 

  16. DeLong, M.R. Primate models of movement disorders of basal ganglia origin, Trends Neurosci., 1990, vol. 13, no. 7, pp. 281–285.

    Article  CAS  PubMed  Google Scholar 

  17. Dorofeeva, N.A., Tikhonov, D.B., Barygin, O.I., et al., Action of extracellular divalent cations on native alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors, J. Neurochem., 2005, vol. 95, no. 6, pp. 1704–1712.

    Article  CAS  PubMed  Google Scholar 

  18. Evstratova, A. and Tóth, K., Synaptically evoked Ca2+ release from intracellular stores is not influenced by vesicular zinc in CA3 hippocampal pyramidal neurons, J. Physiol., 2011, vol. 589, no. 23, pp. 5677–5689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fantin, M., Marti, M., Auberson, Y.P., and Morari, M., NR2A and NR2B subunit containing NMDA receptors differentially regulate striatal output pathways, J. Neurochem., 2007, vol. 103, no. 6, pp. 2200–2211.

    Article  CAS  PubMed  Google Scholar 

  20. Frederickson, C.J., Suh, S.W., Thompson, R.D., et al., Importance of zinc in the central nervous system: the zinc-containing neuron, J. Nutr., 2000, vol. 130, no. 5, pp. 1471S–1483S.

    Article  CAS  PubMed  Google Scholar 

  21. Frederickson, C.J., Koh, J.Y., and Bush, A.I., The neurobiology of zinc in health and disease, Nat. Rev. Neurosci., 2005, vol. 6, no. 6, pp. 449–462.

    Article  CAS  PubMed  Google Scholar 

  22. Fujiyama, F., Fritschy, J.-M., Stephenson, F.A., and Bolam, J.P., Synaptic localization of GABA-A receptor subunits in the striatum of the rat, J. Comp. Neurol., 2000, vol. 416, no. 2, pp. 158–172.

    Article  CAS  PubMed  Google Scholar 

  23. Fukada, T., Yamasaki, S., Nishida, K., et al., Zinc homeostasis and signaling in health and diseases: zinc signaling, J. Biol. Inorg. Chem., 2011, vol. 16, no. 7, pp. 1123–1134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Galvan, A., Kuwajima, M., and Smith, Y., Glutamate and GABA receptors and transporters in the basal ganglia: What does their subsynaptic localization reveal about their function? Neuroscience, 2006, vol. 143, no. 2, pp. 351–375.

    Article  CAS  PubMed  Google Scholar 

  25. Graybiel, A.M., The basal ganglia, Curr. Biol., 2000, vol. 10, no. 14, pp. 813–876.

    Article  Google Scholar 

  26. Guyon, A., Laurent, S., Paupardin-Tritsch, D., et al., Incremental conductance levels of GABAA receptors in dopaminergic neurons of the rat substantia nigra pars compacta, J. Physiol., 1999, vol. 516, no. 3, pp. 719–737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Haug, F.M., Electron microscopical localization of the zinc in hippocampal mossy fiber synapses by a modified sulfide silver procedure, Histochemistry, 1967, vol. 8, no. 4, pp. 355–368.

    Article  CAS  PubMed  Google Scholar 

  28. Holst, B., Egerod, K.L., Schild, E., et al., GPR39 signaling is stimulated by zinc ions but not by obestatin, Endocrinology, 2007, vol. 148, no. 1, pp. 13–20.

    Article  CAS  PubMed  Google Scholar 

  29. Horenstein, J. and Akabas, M.H., Location of a high affinity Zn2+ binding site in the channel of α1β1 γ-aminobutyric acid A receptors, Mol. Pharmacol., 1998, vol. 53, no. 5, pp. 870–877.

    CAS  PubMed  Google Scholar 

  30. Howell, G., Mandava, P., Christensen, M., and Frederickson, C.J., Identification of zinc- containing efferents to the neostriatum by retrograde transport of zinc selenid, Soc. Neurosci. Abstr., 1989, vol. 15, p. 903.

    Google Scholar 

  31. Hsiao, B., Dweck, D., and Luetje, Ch.W., Subunit-dependent modulation of neuronal nicotinic receptors by zinc, J. Neurosci., 2001, vol. 21, no. 6, pp. 1848–1856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Huang, E.P., Metal ions and synaptic transmission: think-zinc, Proc. Natl. Acad. Sci. U.S.A., 1997, vol. 94, no. 25, pp. 13386–13387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ju, P., Aubrey, K.R., and Vandenberg, R.J., Zn2+ inhibits glycine transport by glycine transporter subtype 1b, J. Biol. Chem., 2004, vol. 279, no. 22, pp. 22983–22991.

    Article  CAS  PubMed  Google Scholar 

  34. Kambe, T., Tsuji, T., Hashimoto, A., and Itsumura, N., The physiological, biochemical and molecular roles of zinc transporters in zinc homeostasis and metabolism, Physiol. Rev., 2015, vol. 95, no. 3, pp. 749–784.

    Article  CAS  PubMed  Google Scholar 

  35. Kay, A.R., Evidence for chelatable zinc in the extracellular space of the hippocampus, but little evidence for synaptic release of Zn, J. Neurosci., 2003, vol. 23, no. 17, pp. 6847–6855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kay, A.R. and Tóth, K., Influence of location of a fluorescent zinc probe in brain slices on its response to synaptic activation, J. Neurophysiol., 2006, vol. 95, no. 3, pp. 1949–1956.

    Article  PubMed  Google Scholar 

  37. Kay, A.R. and Tóth, K., Is zinc a modulator? Sci. Signaling, 2008, vol. 1, no. 19, pp. 1–7.

    Article  CAS  Google Scholar 

  38. Kay, A.R., Neyton, J., and Paoletti, P., A startling role for synaptic zinc, Neuron, 2006, vol. 52, no. 4, pp. 572–574.

    Article  CAS  PubMed  Google Scholar 

  39. King, J.C., Brown, K.H., Gibson, R.S., et al., Biomarkers of nutrition for development (BOND)—zinc review, J. Nutr., 2016, vol. 146, no. 4, pp. 858S–885S.

    Article  PubMed Central  Google Scholar 

  40. Kodirov, S.A., Takizawa, S., Joseph, J., et al., Synaptically released zinc gates long-term potentiation in fear conditioning pathways, Proc. Natl. Acad. Sci. U.S.A., 2006, vol. 103, no. 41, pp. 15218–15223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kotenko, K.V., Belyaev, I.K., Buzulukov, Yu.P., et al., An experimental study of the biokinetics of zinc oxide nanoparticles in rats after a single oral administration using labeled atom technology, Med. Radiol. Radiats. Bezop., 2011, vol. 56, no. 2, pp. 5–10.

    Google Scholar 

  42. Lorca, R.A., Rozas, C., Loyola, S., et al., Zinc enhances long-term potentiation through P2X receptor modulation in the hippocampal CA1 region, Eur. J. Neurosci., 2011, vol. 33, no. 4, pp. 1175–1185.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Li, Y., Hough, Ch.J., Frederickson, Ch.J., and Sarvey, J.M., Induction of mossy fiber CA3 long-term potentiation requires translocation of synaptically released Zn2+, J. Neurosci., 2001, vol. 21, no. 20, pp. 8015–8025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li, Y., Hasenhuetl, P.S., Schicker, K., et al., Dual action of Zn2+ on the transport cycle of the dopamine transporter, J. Biochem., 2015, vol. 290, no. 52, pp. 31069–31076.

    CAS  Google Scholar 

  45. Lin, D.D., Cohen, A.S., and Coulter, D.A., Zinc-induced augmentation of excitatory synaptic currents and glutamate receptor responses in hippocampal CA3 neurons, J. Neurophys., 2001, vol. 85, no. 3, pp. 1185–1196.

    Article  CAS  Google Scholar 

  46. Mabrouk, O.S., Mela, F., Calcagno, M., et al., GluN2A and GluN2B NMDA receptor subunits differentially modulate striatal output pathways and contribute to levodopa-induced abnormal involuntary movements in dyskinetic rats, ACS Chem. Neurosci., 2013, vol. 4, no. 5, pp. 808–816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Maret, W., Zinc biochemistry: from a single zinc enzyme to a key element of life, Adv. Nutr., 2013, vol. 4, no. 1, pp. 82–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Matias, C.M., Dionísio, J.C., Saggau, P., and Quinta-Ferreira, M.E., Activation of group II metabotropic glutamate receptors blocks zinc release from hippocampal mossy fibers, Biol. Res., 2014, vol. 47, art. ID 73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Matukhno, A.E., Sukhov, A.G., and Kiroi, V.N., GABA-ergic receptor system and its role in system activity of brain, Usp. Fiziol. Nauk, 2014, vol. 45, no. 3, pp. 79–96.

    CAS  PubMed  Google Scholar 

  50. Meinild, A.-K., Sitte, H.H., and Gether, U., Zinc potentiates an uncoupled anion conductance associated with the dopamine transporter, J. Biochem., 2004, vol. 279, no. 48, pp. 49671–49679.

    CAS  Google Scholar 

  51. Mott, D.D. and Dingledine, R., Unraveling the role of zinc in memory, Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, no. 8, pp. 3103–3104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mott, D.D., Benveniste, M., and Dingledine, R., pH-dependent inhibition of kainate receptors by zinc, J. Neurosci., 2008, vol. 28, no. 7, pp. 1659–1671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Norregaard, L., Frederiksen, D., Nielsen, E.O., and Gether, U., Delineation of an endogenous zinc-binding site in the human dopamine transporter, EMBO J., 1998, vol. 17, no. 15, pp. 4266–4273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Paoletti, P., Ascher, P., and Neyton, J., High-affinity zinc inhibition of NMDA NR1–NR2A receptors, J. Neurosci., 1997, vol. 17, no. 15, pp. 5711–5725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Peters, S., Koh, J., and Choi, D.W., Zinc selectively blocks the action of N-methyl-D-aspartate on cortical neurons, Science, 1987, vol. 236, no. 4801, pp. 589–593.

    Article  CAS  PubMed  Google Scholar 

  56. Pérez-Clausell, J. and Danscher, G., Intravesicular localization of zinc in rat telencephalic boutons. A histochemical study, Brain Res., 1985, vol. 337, no. 1, pp. 91–98.

    Article  PubMed  Google Scholar 

  57. Popovics, P. and Stewart, A.J., GPR39: a Zn2+-activated G protein-coupled receptor that regulates pancreatic, gastrointestinal and neuronal functions, Cell. Mol. Life Sci., 2011, vol. 68, no. 1, pp. 85–95.

    Article  CAS  PubMed  Google Scholar 

  58. Rachline, J., Perin-Dureau, F., Le Goff, A., et al., The micromolar zinc-binding domain on the NMDA receptor subunit NR2B, J. Neurosci., 2005, vol. 25, no. 2, pp. 308–317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ruiz, A., Walker, M.C., Fabian-Fine, R., and Kullmann, D.M., Endogenous zinc inhibits GABA-A receptors in a hippocampal pathway, J. Neurophysiol., 2004, vol. 91, no. 2, pp. 1091–1096.

    Article  CAS  PubMed  Google Scholar 

  60. Salazar, G., Love, R., Werner, E., et al., The zinc transporter ZnT3 interacts with AP-3 and it is preferentially targeted to a distinct synaptic vesicle subpopulation, Mol. Biol. Cell., 2004, vol. 15, no. 2, pp. 575–587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Salazar, G., Craige, B., Love, R., et al., Vglut1 and ZnT3 co-targeting mechanisms regulate vesicular zinc stores in PC12 cells, J. Cell Sci., 2005, vol. 118, no. 2, pp. 1911–1921.

    Article  CAS  PubMed  Google Scholar 

  62. Satala, G., Duszynska, B., Stachowicz, K., et al., Concentration-dependent dual mode of Zn action at serotonin 5-HT1A receptors: in vitro and in vivo studies, Mol. Neurobiol., 2016, vol. 53, no. 10, pp. 6869–6881.

    Article  CAS  PubMed  Google Scholar 

  63. Sato, S., Huang, X.-P., Kroeze, W.K., and Roth, B.L., Discovery and characterization of novel GPR39 agonists allosterically modulated by zinc, Mol. Pharmacol., 2016, vol. 90, no. 6, pp. 726–737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Schetz, J.A. and Sibley, D.R., Zinc allosterically modulates antagonist binding to cloned D1 and D2 dopamine receptors, J. Neurochem., 1997, vol. 68, no. 5, pp. 1990–1997.

    Article  CAS  PubMed  Google Scholar 

  65. Scholze, P., Norregaard, L., Singer, E.A., et al., The role of zinc ions in reverse transport mediated by monoamine transporters, J. Biochem., 2002, vol. 277, no. 24, pp. 21505–21513.

    CAS  Google Scholar 

  66. Sensi, S.L., Paoletti, P., Koh, J.-Y., et al., The neurophysiology and pathology of brain zinc, J. Neurosci., 2011, vol. 31, no. 45, pp. 16076–16085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Shapovalova, K.B., Neostriatum i regulyatsiya proizvol’nogo dvizheniya (Neostriatum and Regulation of Voluntary Movement), St. Petersburg: Nauka, 2015.

  68. Sieghart, W. and Sperk, G., Subunit composition, distribution and function of GABA(A) receptor subtypes, Curr. Top. Med. Chem., 2002, vol. 2, no. 8, pp. 795–816.

    Article  CAS  PubMed  Google Scholar 

  69. Slomianka, L. and Ernst, E., Zinc-containing neurons are distinct from GABA-ergic neurons in the telencephalon of the rat, Anat. Embriol., 1997, vol. 195, no. 2, pp. 165–174.

    Article  CAS  Google Scholar 

  70. Smart, T.G., Hosie, A.M., and Miller, P.S., Zn2+ ions: modulators of excitatory and inhibitory synaptic activity, Neuroscience, 2004, vol. 10, no. 5, pp. 432–442.

    Article  CAS  Google Scholar 

  71. Smith, Y., Bevan, M.D., Shink, E., and Bolam, J.P., Microcircuitry of the direct and indirect pathways of the basal ganglia, Neuroscience, 1998, vol. 86, no. 2, pp. 353–387.

    Article  CAS  PubMed  Google Scholar 

  72. Storustovu, S. and Ebert, B., Pharmacological characterization of agonists at δ-containing GABA-A receptors: functional selectivity for extrasynaptic receptors is dependent on the absence of γ2, J. Pharmacol. Exp. Ther., 2006, vol. 316, no. 3, pp. 1351–1359.

    Article  CAS  PubMed  Google Scholar 

  73. Suvorov, N.F. and Shuvaev, V.T., The role of the basal ganglia in organizing behavior, Neurosci. Behav. Physiol., 2004, vol. 34, no. 3, pp. 229–234.

    Article  CAS  PubMed  Google Scholar 

  74. Swaminat, G., Steenhuis, J., Kobilka, B., and Lee, T.W., Allosteric modulation of β2-adrenergic receptor by Zn2+, Mol. Pharmacol., 2002, vol. 61, no. 1, pp. 65–72.

    Article  Google Scholar 

  75. Tena-Campos, M., Ramon, E., Lupala, C.S., et al., Zinc is involved in depression by modulating G-protein-coupled receptor heterodimerization, Mol. Neurobiol., 2016, vol. 53, no. 3, pp. 2003–2015.

    Article  CAS  PubMed  Google Scholar 

  76. Tepper, J. and Lee, C., GABA-ergic control of substantia nigra dopaminergic neurons, Prog. Brain Res., 2007, vol. 160, pp. 189–208.

    Article  CAS  PubMed  Google Scholar 

  77. Vanderberg, R.J., Mitrovic, A.D., and Johnson, G.A.R., Molecular basis for differential inhibition of glutamate transporter subtypes by zinc ions, Mol. Pharmacol., 1998, vol. 54, no. 1, pp. 189–196.

    Article  Google Scholar 

  78. Vastagh, C., Gardoni, F., Bagetta, V., et al., N-methyl-D-aspartate (NMDA) receptor composition modulates dendritic spine morphology in striatal medium spiny neurons, J. Biol. Chem., 2012, vol. 287, no. 22, pp. 18103–18114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang, Z. and Dahlström, A., Axonal transport of zinc transporter 3 and zinc containing organelles in the rodent adrenergic system, Neurochem. Res., 2008, vol. 33, no. 12, pp. 2472–2479.

    Article  CAS  PubMed  Google Scholar 

  80. Wang, Z., Li, J.-Y., Dahlström, A., and Danscher, G., Zinc-enriched GABAergic terminals in mouse spinal cord, Brain Res., 2001, vol. 92, nos. 1–2, pp. 165–172.

    Article  Google Scholar 

  81. Wenzel, J., Cole, T.B., Born, D.T., et al., Ultrastructural localization of zinc transporter-3 (ZnT-3) to synaptic vesicle membranes within mossy fiber boutons in the hippocampus of mouse and monkey, Proc. Natl. Acad. Sci. U.S.A., 1997, vol. 94, no. 23, pp. 12676–12681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yelnik, J., Functional anatomy of the basal ganglia, Mov. Disord., 2002, vol. 17, suppl. 3, pp. 15–21.

    Article  Google Scholar 

  83. Yakimovskii, A.F. and Kryzhanovskaya, S.Yu., The effect of intrastriatal injections of zinc acetate on the normal and pathological motor behavior of rats, Med. Akad. Zh., 2015a, vol. 15, no. 2, pp. 50–54.

    Google Scholar 

  84. Yakimovskii, A.F. and Kryzhanovskaya, S.Yu., Zinc chloride and zinc acetate injected into the neostriatum produce opposite effect on locomotor behavior of rats, Bull. Exp. Biol. Med., 2015b, vol. 160, no. 2, pp. 281–282.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Yakimovskii.

Ethics declarations

Conflict of interest. The author declares that there exists no conflict of interest.

Statement oncompliance with standards of research involving humans or animals. This article does not contain any studies involving animals or human subjects performed by the author.

Additional information

Translated by D. Timchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakimovskii, A.F. Neurobiology of Zinc. Biol Bull Rev 9, 532–542 (2019). https://doi.org/10.1134/S2079086419060094

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086419060094

Keywords:

Navigation