Skip to main content
Log in

Stable scalar tetraquark \(T_{bb;\bar{u}\bar{d}}^{-}\)

  • Regular Article –Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The mass and coupling of the scalar tetraquark \(T_{bb;\overline{u}\overline{d }}^{-}\) (hereafter \(T_{b:\overline{d}}^{-} \)) are calculated in the context of the QCD two-point sum rule method. In computations we take into account effects of various quark, gluon and mixed condensates up to dimension ten. The result obtained for the mass of this state \(m=(10135\pm 240)~\mathrm {MeV} \) demonstrates that it is stable against the strong and electromagnetic decays. We also explore the dominant semileptonic \(T_{b:\overline{d}}^{-} \rightarrow \widetilde{Z}_{bc;\bar{u}\bar{d}}^{0}l\overline{\nu }_{l}\) and nonleptonic decays \(T_{b:\overline{d}}^{-} \rightarrow \widetilde{Z}_{bc;\bar{u}\bar{ d}}^{0}M\), where \(\widetilde{Z}_{bc;\bar{u}\bar{d}}^{0}\) is the scalar tetraquark composed of color-sextet diquark and antidiquark, and M is one of the final-state pseudoscalar mesons \(\pi ^{-}, K^{-}, D^{-}\) and \(D_s^{-}\) , respectively. The partial widths of these processes are calculated in terms of the weak form factors \(G_{1(2)}(q^2)\), which are determined from the QCD three-point sum rules. Predictions for the mass, full width \(\Gamma _{\mathrm {full}} =(10.88\pm 1.88)\times 10^{-10}~\mathrm {MeV}\), and mean lifetime \(\tau =0.61_{-0.09}^{+0.13}~\mathrm {ps}\) of the \(T_{b:\overline{d} }^{-}\) obtained in the present work can be used in theoretical and experimental studies of this exotic state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All the numerical and mathematical data have been included in the paper and we have no other data regarding this paper.]

References

  1. J.P. Ader, J.M. Richard, P. Taxil, Phys. Rev. D 25, 2370 (1982)

    Article  ADS  Google Scholar 

  2. H.J. Lipkin, Phys. Lett. B 172, 242 (1986)

    Article  ADS  Google Scholar 

  3. S. Zouzou, B. Silvestre-Brac, C. Gignoux, J.M. Richard, Z. Phys. C 30, 457 (1986)

    Article  ADS  Google Scholar 

  4. J. Carlson, L. Heller, J.A. Tjon, Phys. Rev. D 37, 744 (1988)

    Article  ADS  Google Scholar 

  5. F.S. Navarra, M. Nielsen, S.H. Lee, Phys. Lett. B 649, 166 (2007)

    Article  ADS  Google Scholar 

  6. M. Karliner, J.L. Rosner, Phys. Rev. Lett. 119, 202001 (2017)

    Article  Google Scholar 

  7. E.J. Eichten, C. Quigg, Phys. Rev. Lett. 119, 202002 (2017)

    Article  Google Scholar 

  8. S.S. Agaev, K. Azizi, B. Barsbay, H. Sundu, Phys. Rev. D 99, 033002 (2019)

    Article  ADS  Google Scholar 

  9. E. Hernandez, J. Vijande, A. Valcarce, J.M. Richard, Phys. Lett. B 800, 135073 (2020)

    Article  Google Scholar 

  10. M.L. Du, W. Chen, X.L. Chen, S.L. Zhu, Phys. Rev. D 87, 014003 (2013)

    Article  ADS  Google Scholar 

  11. S.S. Agaev, K. Azizi, B. Barsbay, H. Sundu, Phys. Rev. D 101, 094026 (2020)

    Article  ADS  Google Scholar 

  12. W. Chen, T.G. Steele, S.L. Zhu, Phys. Rev. D 89, 054037 (2014)

    Article  ADS  Google Scholar 

  13. G.-Q. Feng, X.-H. Guo, B.-S. Zou,. arXiv:1309.7813 [hep-ph]

  14. A. Francis, R.J. Hudspith, R. Lewis, K. Maltman, Phys. Rev. D 99, 054505 (2019)

    Article  ADS  Google Scholar 

  15. T.F. Carames, J. Vijande, A. Valcarce, Phys. Rev. D 99, 014006 (2019)

    Article  ADS  Google Scholar 

  16. H. Sundu, S.S. Agaev, K. Azizi, Eur. Phys. J. C 79, 753 (2019)

    Article  ADS  Google Scholar 

  17. S.S. Agaev, K. Azizi, H. Sundu, Nucl. Phys. B 951, 114890 (2020)

    Article  Google Scholar 

  18. Z.G. Wang, Z.H. Yan, Eur. Phys. J. C 78, 19 (2018)

    Article  ADS  Google Scholar 

  19. S.S. Agaev, K. Azizi, H. Sundu, Phys. Rev. D 99, 114016 (2019)

    Article  ADS  Google Scholar 

  20. J. Schaffner-Bielich, A.P. Vischer, Phys. Rev. D 57, 4142 (1998)

    Article  ADS  Google Scholar 

  21. A. Del Fabbro, D. Janc, M. Rosina, D. Treleani, Phys. Rev. D 71, 014008 (2005)

    Article  ADS  Google Scholar 

  22. S.H. Lee, S. Yasui, W. Liu, C.M. Ko, Eur. Phys. J. C 54, 259 (2008)

    Article  ADS  Google Scholar 

  23. T. Hyodo, Y.R. Liu, M. Oka, K. Sudoh, S. Yasui, Phys. Lett. B 721, 56 (2013)

    Article  ADS  Google Scholar 

  24. A. Esposito, M. Papinutto, A. Pilloni, A.D. Polosa, N. Tantalo, Phys. Rev. D 88, 054029 (2013)

    Article  ADS  Google Scholar 

  25. S.S. Agaev, K. Azizi, H. Sundu, Phys. Rev. D 100, 094020 (2019)

    Article  ADS  Google Scholar 

  26. R.L. Jaffe, Phys. Rep. 409, 1 (2005)

    Article  ADS  Google Scholar 

  27. S.S. Agaev, K. Azizi, H. Sundu, Turk. J. Phys. 44, 95 (2020)

    Article  Google Scholar 

  28. M. Tanabashi et al. [Particle Data Group], Phys. Rev. D 98, 030001 (2018)

  29. M. Beneke, G. Buchalla, M. Neubert, C.T. Sachrajda, Phys. Rev. Lett. 83, 1914 (1999)

    Article  ADS  Google Scholar 

  30. M. Beneke, G. Buchalla, M. Neubert, C.T. Sachrajda, Nucl. Phys. B 591, 313 (2000)

    Article  ADS  Google Scholar 

  31. A.J. Buras, M. Jamin, M.E. Lautenbacher, Nucl. Phys. B 400, 75 (1993)

    Article  ADS  Google Scholar 

  32. M. Ciuchini, E. Franco, G. Martinelli, L. Reina, Nucl. Phys. B 415, 403 (1994)

    Article  ADS  Google Scholar 

  33. G. Buchalla, A.J. Buras, M.E. Lautenbacher, Rev. Mod. Phys. 68, 1125 (1996)

    Article  ADS  Google Scholar 

  34. S.S. Agaev, K. Azizi, H. Sundu, Eur. Phys. J. C 77, 321 (2017)

    Article  ADS  Google Scholar 

  35. S.S. Agaev, K. Azizi, H. Sundu, Phys. Rev. D 95, 114003 (2017)

    Article  ADS  Google Scholar 

  36. A. Ali, A.Y. Parkhomenko, Q. Qin, W. Wang, Phys. Lett. B 782, 412 (2018)

    Article  ADS  Google Scholar 

  37. A. Ali, Q. Qin, W. Wang, Phys. Lett. B 785, 605 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work of K. A, B. B., and H. S was supported in part by the TUBITAK grant under no: 119F050.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Azizi.

Additional information

Communicated by Eulogio Oset

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agaev, S.S., Azizi, K., Barsbay, B. et al. Stable scalar tetraquark \(T_{bb;\bar{u}\bar{d}}^{-}\). Eur. Phys. J. A 56, 177 (2020). https://doi.org/10.1140/epja/s10050-020-00187-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00187-9

Navigation